
Chapter 7

Events and the Web

7.1 Introduction

In this chapter we discuss event based programming and the World Wide Web. In recent years the
web has become ubiquitous. There are millions of millions web pages available to computer users
around the world. Even new verbs, e.g. “to google”, have entered the lexicon, as a result of the web.
But how does it relate to event based programming? There are several ways:

• GUI Structures on Web pages

Scripting languages like Javascript make is easy to include GUI components such as buttons
and textboxes on web pages. In recent years high end IDEs like NetBeans and Visual Studio
make it possible to create these web pages in a drag and drop fashion, without even needing
to know scripting.

• Web Applications

A web application is a computer program whose primary interface is made up of web pages.
The program is running on a server, and the user interacts with it through one or more
web pages. You don’t have to look far to find web applications. Most major email systems
come with a web client. Similarly, as college professors, the authors regularly look up student
records on-line. If you visit http://yahoo.games.com, you will find dozens of games with
web interfaces. Universally, all of these systems are event based in their interactions with the
server. They follow the Request-Response interaction model discussed in Chapter 1.

• Web Services

Web applications are great. We can take our model a step further, however. Why limit
ourselves to just interacting with them via web pages? A Web Service is a service oriented
program running on a web server, but the client may be a web browser, a standalone program,
or another web server. Web services let companies produce and sell services via the web. The
classic example of a web service is PayPal. PayPal securely manages the financial portion of
sales, so users no longer have to enter their credit card numbers on-line to make purchases.
Both the consumer and the seller interact with PayPal to complete the transaction.

The World Wide Web is obviously a loosely coupled distributed system and both web applications
and web services are distributed in nature. To a certain extent, then, this chapter is just another
chapter about distributed programming, just using a different distributed infrastructure. There are
good reasons to use the web infrastructure to develop distributed systems. The primary reason is
that web is fairly mature and the protocols and languages used to communicate between browsers

131

and servers are very well understood. This makes it easier for developers to create and debug their
applications.

7.1.1 Historical Perspective

Although the basic concepts of hypertext and networking extend back farther, the World Wide
Web originated in 1990 when two scientists working at CERN in Switzerland, Sir Tim Berners-Lee
and Robert Cailliau, proposed building a network storing hypertext pages that could be viewed by
browsers. The Web really took off when the Mosaic Web browser was developed in 1993 by Marc
Andreesen and others at the National Center for Supercomputing Applications at the University of
Illinois at Urbana-Champaign.

Early web pages were static. A web designer created an html document and deployed it on a
web server. Users browsed to the page and read the document’s contents. The page didn’t change
unless the web designer deployed an updated version. It soon became clear that the static model
was inadequate because content on the web changed. By 1995 Netscape had introduced server
side pushing of new content to browsers1. This allowed the server to update browser pages at its
discretion. JavaScript was introduced in 1996. JavaScript is embedded in web pages and allows web
pages to modify themselves by executing code as needed.

Today, the Web is very dynamic. Web servers respond to users not only with static html pages,
but also with content created on the fly, primarily in response to information sent with requests from
the user. Common Gateway Interface (CGI) scripts, Servlets, Java Server Pages (JSPs), PHP, Ruby
on Rails, and a variety of other technologies have emerged that let programs execute on web servers
and produce dynamic content.

7.1.2 Multi-tiered Architectures

Many real world web applications use a multi-tiered architecture, where web pages serve as the user
interface, the web server contains application code, a.k.a. business logic, and there is a database
back-end, which stores persistent information for later reference.

In this model the browser serves as a thin client, with limited responsibilities. It provides a
user interface and validates data before sending it to the server. Local data validation is important,
because the web server may be remote and there can be noticeable time lag when interacting with
it. Local validation saves time and server-side CPU cycles.

The server executes the application code. It runs programs that process orders, update inventory,
or generate student record reports.

The database back-end serves as persistent storage. Orders for good, inventory, or student records
all have very long lifetimes. The database stores this information for future reference.

This chapter does not contain multi-tiered architecture examples. While it is an interesting topic,
they are not at the heart of understanding events and the web.

7.2 Web Fundamentals

Before we can intelligently develop web applications, we need to understand the fundamentals of
how the web works.

1Note the use of event based terminology.

132

7.2.1 HyperText Transfer Protocol (HTTP)

For two computing systems to communicate they need an agreed upon set of standards for their
messages. For example, in the previous chapter we briefly discussed IIOP, the Internet Inter-Orb
Protocol, which CORBA uses. In fact, the Internet is based on a layered set of protocols, from the
physical layer, made up of integrated circuits and wires, at the low-end, to the application layer at
the high-end; all of which must work together to facilitate intercomputer communication.

The web uses HyperText Transfer Protocol (HTTP). It is an application level protocol. It was
designed to facilitate communication of hypertext documents 2. Its most common use is to transfer
web pages between a server and web browser. HTTP is based on request-response interactions,
where a web browser requests a page and a web server responds with the page. For example, HTTP
defines the standard for Uniform Resource Locators (URLs) which are entered after the http: in a
web browser.

HTTP also defines the services that may be requested from the server. There are eight. Three
of are interest to us: Head and Get.

• Get

Get requests a web page from the server. Ideally, Get should not change the state of the web
server. That is, multiple calls to get the same web page should always return an identical
page.

• Head

Head functions much like get, but does not request the entire page. A web page has a number
of parts, including a heading and a body. The heading contains summary information about
the page, but not the page content. Head only requests the heading information for the page.
Head is typically used to test a link before an entire document is requested.

• Post

Post submits data to the web server. Functionally, Post is similar to Get, in that a request
is sent from a browser and a response is returned by the server. Because Post is meant for
data submission, it is acceptable to have identical Post requests vary their response based on
a number of factors, such as whether the information being sent was submitted previously.

7.2.2 HyperText Markup Language (HTML)

HyperText Markup Language (HTML) is the language used to describe web pages3. Markup lan-
guages surround data or information with tags in angular brackets < and > that describe either
how the information should be presented or the information’s content. Different markup languages
include different sets of tags. HTML is strictly a presentation language. The tags state how things
should be displayed. Below is a short HTML document that displays in Internet Explorer as shown
in Figure 7.1.

2Hypertext documents contains links to other documents, that the reader can access, typically by clicking on the

link with the mouse.
3Use of HTML is not limited to web pages. For example, it is also frequently used to format messages in email

systems.

133

Figure 7.1: A simple web page

1 <!−−
2 He l lo . html
3 A simple web page to i l l u s t r a t e html tags .
4 Written by : Stuart Hansen
5 Date : March 23 , 2009
6 −−>

7 <!DOCTYPE HTML PUBLIC ”−//W3C//DTD HTML 4.01 Tran s i t i ona l //EN”>
8 <html>
9 <head>

10 <t i t l e >Hel lo World Page</ t i t l e >

11 <meta http−equiv=”Content−Type” content=” text /html ; cha r s e t=UTF−8”>
12 </head>

13 <body>

14 <h1>Hel lo World!</h1>
15 </body>

16 </html>

Lines Commentary

1–6 Comments within HTML documents appear between <!-- and -->.

7 This is the document type declaration. Including this declaration allows the doc-
ument to be validated, guaranteeing that it is well-formed. The two primary fam-
ilies of document types currently in use for web pages are HTML 4.01 XXX and
XHTML 1.X XXX. For our purposes the differences among the various versions may
be ignored.

8–16 The part of the HTML document that will be displayed appears between the
<html> and </html> tags. There are two required elements within the html
document, <head> </head> and <body> </body>

9–12 The head element contains the title, meta-information, and the locations of scripts.

11 Meta information is information about the page. In this example, it tells us that
the document is a text document encoded in UTF-8.

13–15 The body of the document contains the information that should be displayed in
the web page. In this example, it contains one line, ”Hello World!” that will be
displayed as a top-level heading, <h1>.

134

There are many HTML tags and for our purposes it is foolish to try to memorize all of them.
Instead, there are any of a number of software tools that will help produce nice looking web pages.
As programmers4 the authors recommend using NetBeans. NetBeans is bundled with a web server
for displaying pages (see the next section), and drag and drop tools for inserting tags into pages.

7.2.3 Web and Application Servers

You probably already have a good notion of what a web server is. It is a program running on a
computer that returns a web page when a request is made for it. Older web servers were designed
just to return static web pages and not much more. As it became evident that dynamic web content
was becoming increasingly important, web servers were extended to include the ability to run other
programs to create the content. For example, an ability to execute Perl scripts was a standard
add-on to early servers.

In recent years, as web applications have become more and more important, the industry has
shifted from web servers to application servers. An application server is designed to expose the
public interface of the application, efficiently creating dynamic content, while still being willing to
respond with static pages when required. There are numerous application servers available from
different vendors, including: Tomcat, GlassFish, JBoss, WebLogic, WebObjects and WebSphere.

Like static web pages, web applications need to be deployed to the server where they will run.
Often this amounts to simply creating a subdirectory and copying files into it. Unfortunately, the
details differ significantly from application server to application server. Fortunately, many servers
now come with deployment tools to aid the developer.

7.3 Java Servlets

As in previous chapters, we will illustrate these concepts using Java.

Servlets are Java programs that run on an application server. The servlet container is the portion
of the application server that executes the Java byte code. The servlet container is responsible for
managing the servlets. For example, it maps URLs to servlets. It starts the Java virtual machine
when a request is made for a servlet. It checks the access permissions of the requester to ascertain
whether they have permission to run the servlet.

There are two files needed to work with servlets. On the browser side, we need a web page that
requests that a servlet be run.

On the server side, we need the servlet. Servlets are pure Java code. They require a specialized
Java library: javax.servlet.*. Our servlet class will extend HTTPServlet, overriding methods to
accomplish our tasks.

7.3.1 Calculator Example

The ideas behind web applications and their dynamic content become much clearer when we look
at an example. The examples in this chapter were developed using NetBeans 6.5. This IDE comes
with graphical tools for building web pages and several application servers that can be used for
development. It also comes packaged with the libraries (javax.servlet.*) that are needed to
develop servlets.

Below is an abbreviated web page that contains a calculator. The web page is shown in Figure
7.2. The result of carrying out a calculator operation is shown in Figure 7.3.

4This is a programming text, after all.

135

10 <html>
11 <head>

12 <t i t l e >Calcu lator </ t i t l e >

13 <meta http−equiv=”Content−Type” content=” text /html ; cha r s e t=UTF−8”>
14 </head>

15 <body>

16 <form name=” Ca lcu la t e ” ac t i on=” Ca lcu la t e ”>
17 <input type=” text ” name=”FirstNumber” value=”0” />
18 <input type=” text ” name=”SecondNumber” value=”0” />
19 <s e l e c t name=”Operation ”>
20 <option>+</option>

21 <option>−</option>

22 <option >∗</option>

23 <option >/</option>

24 </s e l e c t >

25 <input type=”submit” value=”OK” name=”SubmitButton” />
26 </form>

27 </body>

28 </html>

Lines Commentary

1–9 The first 9 lines of the file contain heading comments and the data type declaration
and are omitted to save space.

16–26 The body of the page contains a form, which is where the user enters information for
processing. The action=’’Calculate’’ attribute says that the Calculate servlet
should be called when the form is submitted.

17–18 There are two text fields on the form, where the user enters the two numbers to be
processed.

19–24 The form contains a drop down list, from where the user selects the operation to
be performed.

25 The Submit button is clicked to send the request to the server.

There are more elements that can be included in a form, including radio buttons, multi-line input
fields, and checkboxes. A complete discussion of html forms is beyond the scope of this text.

136

Figure 7.2: The interface for the calculator.

Figure 7.3: The result of carrying out a calculator operation.

137

The Calculate Servlet

1 import java . i o . IOException ;
2 import java . i o . Pr intWriter ;
3 import java . u t i l . Enumeration ;
4 import javax . s e r v l e t . Se rv l e tExcept ion ;
5 import javax . s e r v l e t . http . HttpServ le t ;
6 import javax . s e r v l e t . http . HttpServ letRequest ;
7 import javax . s e r v l e t . http . HttpServletResponse ;
8
9 /∗∗

10 ∗ Ca l cu l a t e . java shows how to proces s form data in a s e r v l e t .
11 ∗ This f i l e responds to r e qu e s t s genera ted by Ca l cu l a t o r . html
12 ∗
13 ∗ @author Stu Hansen
14 ∗ @version March 29 , 2009
15 ∗/
16 public class Calcu la te extends HttpServ le t {
17 /∗∗
18 ∗ Processes r e qu e s t s f o r both GET and POST methods .
19 ∗ @param reque s t s e r v l e t r e que s t
20 ∗ @param response s e r v l e t response
21 ∗ @throws Se r v l e tExcep t i on i f a s e r v l e t−s p e c i f i c e r ror occurs
22 ∗ @throws IOException i f an I /O error occurs
23 ∗/
24 protected void processRequest (HttpServ letRequest request ,
25 HttpServletResponse re sponse) throws Serv le tExcept ion , IOException {
26 response . setContentType (” text /html ; cha r s e t=UTF−8”) ;
27
28 // Get the t h r e e parameters passed in from the web page
29 int i = In t eg e r . pa r s e In t (r eque s t . getParameter (”FirstNumber”)) ;
30 int j = In t eg e r . pa r s e In t (r eque s t . getParameter (”SecondNumber”)) ;
31
32 // Carry out the r eque s t ed opera t ion
33 St r ing op = reques t . getParameter (”Operation ”) ;
34 int r e s u l t = 0 ;
35 i f (op . equa l s (”+”))
36 r e s u l t = i+j ;
37 else i f (op . equa l s (”−”))
38 r e s u l t = i−j ;
39 else i f (op . equa l s (”∗”))
40 r e s u l t = i ∗ j ;
41 else i f (op . equa l s (”/”))
42 r e s u l t = i / j ;

138

43 // Respond back to the browser wi th the r e s u l t
44 Pr intWriter out = response . getWriter () ;
45 try {
46 out . p r i n t l n (”<html>”) ;
47 out . p r i n t l n (”<head>”) ;
48 out . p r i n t l n (” <t i t l e >Se r v l e t Calcu late </ t i t l e >”) ;
49 out . p r i n t l n (”</head>”) ;
50 out . p r i n t l n (”<body>”) ;
51 out . p r i n t l n (” <h1>Result = ” + r e s u l t + ”</h1>”) ;
52 out . p r i n t l n (”</body>”) ;
53 out . p r i n t l n (”</html>”) ;
54 } f ina l ly {
55 out . c l o s e () ;
56 }
57 }

Lines Commentary

1–7 The servlet packages do not come with Sun’s JDK, but may be downloaded sepa-
rately. They do come bundled with NetBeans.

16 Servlet classes extend HttpServlet. This is an abstract class and programmer must
override at least one method, generally doGet() and/or doPost()..

24 & 25 Both doGet() and doPost() call processRequest(). The request parameter con-
tains all the data included with the request arriving from the web browser. The
response parameter is used to dynamically generate a page and send it to the
browser.

29, 30 &
33

We make three calls to request.getParameter() to obtain the two numbers and
the operation we are to carry out. Note that all parameters are Strings, so the
numbers need to be massaged into their correct integer representations.

35–42 We use an if..else if structure to determine the operation and carry it out.

45–57 We dynamically generate a web page to be returned to the browser.

The remainder of the servlet is autogenerated by NetBeans. Both doGet() and doPost() call
processRequest(), which is defined above.

139

61 /∗∗
62 ∗ Handles the HTTP <code>GET</code> method .
63 ∗ @param reque s t s e r v l e t r e que s t
64 ∗ @param response s e r v l e t response
65 ∗ @throws Se r v l e tExcep t i on i f a s e r v l e t−s p e c i f i c e r ror occurs
66 ∗ @throws IOException i f an I /O error occurs
67 ∗/
68 @Override
69 protected void doGet (HttpServ letRequest request ,
70 HttpServletResponse response)
71 throws Serv le tExcept ion , IOException {
72 processRequest (request , r e sponse) ;
73 }
74
75 /∗∗
76 ∗ Handles the HTTP <code>POST</code> method .
77 ∗ @param reque s t s e r v l e t r e que s t
78 ∗ @param response s e r v l e t response
79 ∗ @throws Se r v l e tExcep t i on i f a s e r v l e t−s p e c i f i c e r ror occurs
80 ∗ @throws IOException i f an I /O error occurs
81 ∗/
82 @Override
83 protected void doPost (HttpServ letRequest request ,
84 HttpServletResponse re sponse)
85 throws Serv le tExcept ion , IOException {
86 processRequest (request , r e sponse) ;
87 }
88
89 /∗∗
90 ∗ Returns a shor t d e s c r i p t i o n o f the s e r v l e t .
91 ∗ @return a S t r ing con ta in ing s e r v l e t d e s c r i p t i o n
92 ∗/
93 @Override
94 public St r ing g e t S e r v l e t I n f o () {
95 return ”Short d e s c r i p t i o n ” ;
96 }
97 }

Deploying the Calculator Servlet

Deploying a web application is primarily the process of copying the application files to the appro-
priate subdirectory within the server’s servlet container and then registering the servlet with the
container. While this seems straightforward, the details get confusing5. NetBeans and other IDEs
will autogenerate a web.xml script that ant will use to do the deployment. This is, by far, your best
option for deploying web applications.

Running the Calculator Servlet

A servlet is invoked by having the browser send a request for the servlet to the server. In our case,
the request will include parameters. Clicking the ”Submit” button will generate the request, but

5Each servlet has a servlet name, a class name, and a URL pattern. Giving the same servket three different names

strikes the authors as particularly confusing. We recommend that whenever possible use the same name for all three.

140

the user can also type the request into the browser’s navigation bar. For the calculator, running on
the local machine, on port 8080, the user would enter:
http://localhost:8080/StusWebApps/Calculate?FirstNumber=5&SecondNumber=7&Operation=*&SubmitButton=OK

7.4 Adding State to Web Applications

Recall that an important feature of event based systems is that they are state based. Unfortunately,
HTTP was designed as a stateless protocol. That is, web servers are not required to retain any
information about a client between the client’s requests. This worked fine when the web consisted
of static web pages, but has created havoc in a universe where we expect web servers to maintain
shopping carts or other user specific data. For example, each time a user adds something to a
shopping cart, the server should maintain that information, at least for a while. This is a change in
the data state of the server.

It is also frequently necessary to maintain control state. Consider, for example, a two person
game where the people alternate turns. A web interface for this game requires that the one player
be able make a move and that the other player be blocked from moving. That is, there is control
state needed.

The problem of maintaining state in web applications has been solved in a number of ways,
including cookies, sessions, hidden variables and databases.

7.4.1 Cookies

A cookie is a small file sent by the server and stored on the client. The contents of the file will
be returned to the server with subsequent requests. This method avoids problems with session
timeouts, but creates several new issues. A server may store private information, e.g. credit card
numbers, in a cookie, and others using the computer may see its contents. Cookies may track all the
pages within a site that the user visits, building a profile of the user. This gives some people serious
ethical concerns. Most browsers now allow the user to turn off cookies, preventing them from being
stored.

7.4.2 Sessions

To understand sessions, we first need to understand a bit about a servlet’s lifecycle. There are two
practical considerations that guide this discussion. First, web and application servers handle many
requests with limited resources. Thus, efficient management of resources is still very important on
web servers. Second, when a user browses a website, they often visit the same or related pages
repeatedly.

With limited memory resources, it makes sense for the servlet container to wait for a request for
a servlet before loading it into memory. Once in memory, it makes sense to keep the servlet loaded
for some time, as the user may well return to the servlet again. The period of time the user interacts
with the servlet is known as a session. The servlet may remain in memory longer than that, as there
may be multiple users interacting with the same servlet.

In modern web applications, there are many types of information that developers may want to
keep for the duration of a session. For example, a shopping cart contains items the user is interested
in purchasing, but hasn’t yet paid for. We don’t want these to be forgotten. Similarly, many websites
now require logins. A session should keep track of whether the user has already logged in.

In most cases, it also makes sense to have sessions time out. That is, if a user makes no more
requests of a servlet during a given time interval, the session should be dropped. The default timeout

141

Figure 7.4: The interface for the counter application.

Figure 7.5: The page that results after the servlet has been visited 35 times.

period is typically 30 minutes. In Java, the HTTPSession class contains setMaxInactiveInterval()
which allows the programmer to change that time.

Java’s servlet library contains an HttpSession class. An HttpSession object is automatically
created for a user’s interactions with the servlet. The session object operates much like a hashtable,
where the key is a string and the value is an arbitrary Java object. When we want to store state
using a session, we obtain a reference to the session object and then get and set attributes within it.

The Counter Example

The following listing is for Counter.html, a web page with three ways to contact the same servlet:
a link, a button that performs a get request, and a button that performs a post request.

142

8 <html>
9 <head>

10 <t i t l e ></t i t l e >

11 <meta http−equiv=”Content−Type” content=” text /html ; cha r s e t=UTF−8”>
12 </head>

13 <body>

14 <a h r e f=”Counter”>Cl ick Counter
15 <form name=”CounterGetForm” ac t i on=”Counter”>
16 <input type=”submit” value=”Counter − Get” name=”GetCounter” />
17 </form>

18 <form name=”CounterPostForm” ac t i on=”Counter” method=”POST”>
19 <input type=”submit” value=”Counter − Post” name=”PostCounter ” />
20 </form>

21 </body>

22 </html>

Lines Commentary

1–7 The first seven lines contain heading comments and data type declarations. They
are omitted for brevity.

14 This link requests the servlet.

15 This button requests the servlet using ”get”.

18 This button requests the servlet using ”post”.

The excerpted listing below uses a session object to count how many times the servlet has been
visited during this session. The entire code listing for this servlet is available on the text’s website
as Counter.java.

143

21 protected void processRequest (HttpServ letRequest request ,
22 HttpServletResponse re sponse) throws Serv le tExcept ion , IOException {
23 Pr intWriter out = response . getWriter () ;
24
25 HttpSess ion s e s s i o n = reques t . g e tS e s s i on (true) ;
26
27 int count = 0 ;
28
29 // Create the new se s s i on counter
30 i f (! s e s s i o n . isNew ()) {
31 count = ((In t eg e r) s e s s i o n . ge tAt t r ibute (” count”)) . intValue () ;
32 }
33
34 // Increment the counter f o r t h i s v i s i t
35 count++;
36 s e s s i o n . s e tAt t r i bu t e (” count” , count) ;
37
38 response . setContentType (” text /html ; cha r s e t=UTF−8”) ;
39
40 try {
41 out . p r i n t l n (”<html>”) ;
42 out . p r i n t l n (”<head>”) ;
43 out . p r i n t l n (” <t i t l e >Se r v l e t Counter</ t i t l e >”) ;
44 out . p r i n t l n (”</head>”) ;
45 out . p r i n t l n (”<body>”) ;
46 out . p r i n t l n (” <h1>Counter va lue f o r t h i s s e s s i o n i s : ”
47 + count + ”</h1>”) ;
48 out . p r i n t l n (”</body>”) ;
49 out . p r i n t l n (”</html>”) ;
50 } f ina l ly {
51 out . c l o s e () ;
52 }
53 }

144

Lines Commentary

1–20 These lines contain imports, heading comments and the class declaration. They
are virtually identical to the code in the previous example and are omitted for
brevity. We only show the processRequest() method, which contains all the code
of interest.

25 We obtain a reference to the session for this servlet. The true parameter directs
the call to create a new session object i f one has not already been created. You
may think of a session as a hashtable. It stores any object that the programmer
wants to keep around between visits to the servlet.

30–32 In our case, we want to store the value of a counter that tells us how many times
this client has visited this servlet during this session. Note that a client request
arriving from another IP address will have its own session and counter.

36 Sessions use Strings and keys and hold Objects. We use autoboxing to cast our
int into an Integer. This relates back to line 31, where we we had to explicitly cast
the Object to be an Integer, and then used auto unboxing to convert it to an int.

40–53 Respond with a dynamically created web page.

46 Note the use of count.

The remainder of the servlet code is autogenerated and is completely identical to that in the
previous example, so is omitted.

7.4.3 Other Ways to Maintain State

Hidden Parameters

We have already seen how data can be collected from forms and sent to the server. Hidden parameters
behave the same way as interface parameters, but are not visible on the web page. Web pages and
servers can exchange information via hidden parameters.

Databases

Many web applications use database back-ends to store persistent information. For example, when
you place an order for a cashmere sweater on the web, a database record will be created storing this
information for further processing. Databases are very important in many web applications, but
their role is to maintain information with very long lifespans (persistent information), much longer
than session based information. The record of your sweater order will be around while the order is
filled, shipped, arrived, and is possibly returned. This is much longer than a session.

7.4.4 Combining Request and Response Pages

The counter example in the previous section contains a rather large maintenance problem. The
servlet is paired with a web page that requests it. A change to either will require a change to the
other. Since the web page and servlet may be stored in different directories or on different machines,
maintenance becomes an issue. If you consider doing a larger website, with numerous requesting
pages and servlets, you can see how nightmarish the situation could become.

One solution to this problem is to make all the web content dynamic. Our requesting page was
originally static. It was HTML code that was stored in a file. We requested that page, then used

145

that page to invoke the servlet which generated the counter response page. Instead, we can have a
servlet generate both the requesting page and the response page. In our example, we can have the
page be self contained. That is, we will put the counter and the controls to increment the counter
on the same page. There is no reason why a servlet couldn’t generate multiple very different pages,
however, based on session or parameter values.

25 protected void processRequest (HttpServ letRequest request ,
26 HttpServletResponse re sponse) throws Serv le tExcept ion , IOException {
27 response . setContentType (” text /html ; cha r s e t=UTF−8”) ;
28 Pr intWriter out = response . getWriter () ;
29 try {
30 // Get the s e s s i on v a r i a b l e
31 HttpSess ion s e s s i o n = reques t . g e tS e s s i on (true) ;
32
33 int count2 = 0 ; // an i n t e g e r counter
34
35 // Update the s e s s i on ’ s a t t r i b u t e , i f i t e x i s t s
36 i f (s e s s i o n . ge tAt t r ibute (” count2”) != null) {
37 count2 = ((In t eg e r) s e s s i o n . g e tAt t r ibute (” count2”)) . intValue () ;
38 }
39
40 // Increment the counter f o r t h i s v i s i t
41 count2++;
42
43 // Set the s e s s i on ’ s a t t r i b u t e
44 s e s s i o n . s e tAt t r i bu t e (” count2” , count2) ;
45
46 // Return a new web page to the browser
47 response . setContentType (” text /html ; cha r s e t=UTF−8”) ;
48 out . p r i n t l n (”<html>”) ;
49 out . p r i n t l n (”<head>”) ;
50 out . p r i n t l n (” <t i t l e >Se r v l e t Counter</ t i t l e >”) ;
51 out . p r i n t l n (”</head>”) ;
52 out . p r i n t l n (”<body>”) ;
53
54 out . p r i n t l n (”<h1>Counter value f o r t h i s s e s s i o n i s : ”
55 + count2 + ”</h1>”) ;
56 out . p r i n t l n (”<form name=\”CounterGetForm\” ac t i on=\”Counter2\”>”) ;
57 out . p r i n t l n (” <input type=\”submit \” value=\”Counter − Get\”
58 name=\”GetCounter\” />”) ;
59 out . p r i n t l n (”</form>”) ;
60
61 out . p r i n t l n (”</body>”) ;
62 out . p r i n t l n (”</html>”) ;
63 } f ina l ly {
64 out . c l o s e () ;
65 }
66 }

The remainder of the servlet code is autogenerated and is completely identical to that of the
previous example. It is omitted for brevity.

146

Figure 7.6: The interface for the self-contained counter servlet.

Lines Commentary

1–24 These lines contain imports, heading comments and the class declaration. They
are virtually identical to the code in the previous example and are omitted for
brevity. We only show the processRequest() method, which contains all the code
of interest. The entire code listing is available on the text’s website.

27–44 These lines are virtually identical to those in the previous example. We get the
session variable, see if there is a counter2 attribute, and if not, initialize it.

46–61 Our out.printlns dynamically create a web page.

54 Note the use of counter2 on this line.

56–59 We include a form on the response. By doing so, we alleviate the need for a separate
web page for input. Instead, the requesting page is just a different version of the
response page.

7.5 Java Server Pages (JSPs)

Java Server Pages (JSPs) are an extension to servlets that make combining dynamic and static
content a bit more natural. A JSP is identified by having the name suffix .jsp. A JSP looks much
like a static web page, but has Java code embedded within it, between <% and %>. A servlet is
autogenerated on the application server that wraps the JSP’s content into something very much like
the previous example.

The web page for this example is identical to the web page in the previous section, so its figure
is omitted for brevity.

147

1 <%−−
2 Document : JSPCounter
3 This f i l e conta in s a j sp page that keeps t rack o f a counter
4 Created on : Mar 29 , 2009 , 10 : 23 : 20 AM
5 Author : Stu Hansen
6 −−%>

7
8 <%@page contentType=” text /html” pageEncoding=”UTF−8”%>

9 <!DOCTYPE HTML PUBLIC ”−//W3C//DTD HTML 4.01 Tran s i t i ona l //EN”
10 ”http ://www.w3 . org /TR/html4/ l o o s e . dtd”>
11
12 <html>
13 <head>

14 <meta http−equiv=”Content−Type” content=” text /html ; cha r s e t=UTF−8”>
15 <t i t l e >JSP Counter</ t i t l e >

16 </head>

17 <body>

18 <%
19 // We inc l ude the code t ha t i s used to keep t rack o f our counter
20 // Note t ha t j s p understand a number o f d e f a u l t v a r i a b l e s l i k e :
21 // r e que s t and s e s s i on
22
23 int jspCount = 0 ; // Our counter
24
25 // Check i f t h i s i s the f i r s t time during t h i s s e s s i on t ha t we
26 // have been to the j s p . I f not , g e t the counter .
27 i f (s e s s i o n . ge tAt t r ibute (” jspCount”) != null) {
28 jspCount = ((In t eg e r) s e s s i o n . ge tAt t r ibute (” jspCount”)) . intValue () ;
29 }
30
31 // Update the counter and s t o r e i t back in t o the s e s s i on
32 jspCount++;
33 s e s s i o n . s e tAt t r i bu t e (” jspCount” , jspCount) ;
34
35 // Respond to the browser wi th the counter
36 out . p r i n t l n (”<h1>Counter va lue f o r t h i s s e s s i o n i s : ”
37 + jspCount + ”</h1>”) ;
38 %>

39
40 <!−− In p lace o f the out . p r i n t l n above , we could use the f o l l ow i n g −−>

41 <!−−<h1> Counter va lue for this s e s s i o n i s :
42 <% out . p r i n t (s e s s i o n . ge tAt t r ibute (” jspCount”)) ; %> </h1> −−>

43
44 <form name=”CounterGetForm” ac t i on=”JSPCounter . j sp ”>
45 <input type=”submit” value=”Counter − Get” name=”JSPCounter” />
46 </form>

47
48 </body>

49 </html>

148

Lines Commentary

1–10 These are heading comments and document type declarations. Note the difference
in comment tags for JSPs rather than static web pages.

12–17 These are standard html tags.

17 & 37 The <% and %> tags surround a block of Java code that is embedded within the
JSP.

18–36 This is standard Java code that looks very much like the code in processRequest()

in the previous example. It is executed every time the JSP is loaded.

27, 33 &
36

JSPs automatically give the programmer access to certain standard variables, in-
cluding session and out. There is no need to declare or instantiate them.

43–45 This again is standard html code that places the button on the page.

48–49 Terminate the open tags.

There is much more to JSPs than discussed here. There are custom tag libraries that make
handling content easier. Students interested in delving further into JSPs are encouraged to pick up
any of a number of excellent texts on the topic.

7.6 Web Services

The web application model presented in the previous chapter has been very successful, with many
organizations deploying web applications as part of their web sites. How event based are they,
however?

In some ways, web applications are quite event based:

• The web based front-end usually contains a form with text boxes and buttons, and code is
associated with these components.

• The web application literature often refers to the web front-end as a view, the servlet as a
controller, and the database as the model, again mirroring the terminology of the event based
literature.

In other ways, web applications aren’t all that event based:

• The web based front-end, the servlets running on the server, and the database back-end,
although distributed, are all tightly coupled into one application. The association of the
web pages, the servlets and the database is done statically, when the system is created, not
dynamically, as we typically associate with events.

• The exchanges between the browser and server follow a request/response interaction, much like
a method call. The browser requests a page from the server and sends along some parameters.
The server returns the page. The interaction is asynchronous in the sense that the browser
does not know how long it will take to receive a response from the server, but it is blocking in
the sense that the browser waits for the response6.

6Most browsers have a separate user thread that is not blocked, however, allowing the user to open another page

or carry out other activities.

149

Web services utilize the same web infrastructure as web applications, but are built on a different
model. A web service offers services to client programs. The client may be a web browser, a different
web server, or a standalone program. The client requests a service from the hosting application
server. The service response may be a web page, a different document, or nothing at all.

There are numerous examples of web services. Here are a few popular ones:

• PayPal, https://developer.paypal.com/, securely manages the financial portion of sales, so
users no longer have to enter their credit card numbers to make on-line purchases. Both the
consumer and the seller interact with PayPal to complete the transaction.

• Google documents, http://docs.google.com, lets users create, edit and store word processing
documents, spreadsheets and presentations.

• Blogger.com, http://www.blogger.com/developers/api/1 docs/, lets programmers add blog-
ging capabilities to their applications.

• Flickr photo sharing, http://www.flickr.com/services/api/, lets programmers add photo
sharing capabilities to their applications.

Some authors argue that web services are the future of desktop computing. Applications and
documents will be stored on servers. It won’t matter where you are, or what computer you work
at. As long as you have any computer and the Internet available, you will be able to access all your
work.

Like many things in computing, web services continue to evolve at a rapid rate. The next few
sections discuss the basic model used by web services. However, just about all aspects of this model
are currently in a state of flux, with new ideas and technologies being introduced regularly. We will
briefly address these issues at the end of the chapter.

7.6.1 Stock Quote Example

A good way to understand how web services work is to walk through an example.

Pretty Good Investment Advisers wants to provide a way for clients to look up stock quotes on-
line. They develop a web service where the user enters a stock symbol. In real time, the service looks
up the price of the stock on their corporate office’s mainframe computer, and returns the result to
the user. They advertise their new service at: http://www.xmethods.net. One of their best clients
is a CS professor at a local college. She downloads the documents describing the stock quote service,
then writes a client program to work with the service to look up stock prices. She runs her program
and enters IBM as the stock symbol, The web service looks up IBM and returns the stock quote in
a document very similar the one shown below. Her program parses this document and displays the
result.

7.6.2 The eXtensible Markup Language (XML)

Web services rely on eXtensible Markup Language (XML) for several purposes. It is used to describe
the services. It is used to request services, and it is used for the responses. Like HTML, XML uses
text based tags to organize the content of documents. For example, below is a brief XML document
describing a stock quote.

150

1 <Stock>

2 <Symbol> IBM </Symbol>
3 <Last> 82 .71 </Last>
4 <Date> 12/15/2008 </Date>
5 <Time> 1 :00pm </Time>
6 <Change> +0.51 </Change>
7 <Open> 82 .51 </Open>

8 <High> 82 .86 </High>

9 <Low> 80 .00 </Low>

10 <Volume> 3007015 </Volume>
11 </Stock>

Lines Commentary

1 & 11 Each stock quote is between <Stock> and </Stock>. In our example we only have
one quote, but it would be easy to extend to a list of stocks.

2–10 The stock quote consists of a variety of attributes, each within its own pair of tags.
For example, the low selling price of IBM on December 15, 2008 was 80.00.

XML Languages, Schemas and SOAP

We need a standard way to represent stock quotations, otherwise the client programs will have a
terrible time working with the service. The pattern for the standard can be seen in the IBM quote
above. Each quote is surrounded by <Stock> and </Stock> and has a list of properties between.
An XML language is a well defined set of XML tags that provides information on a particular
topic, e.g. stock quotes, that follows a particular scheme. When we say we want a standard way
to represent stock quotes, what we are saying in XML terms is that we want to define an XML
Language.

An XML Schema describes an XML language. Thus, there is an XML StockQuote schema that
describes all the tags that can occur in any stock quote document. Anyone implementing a stock
quote service, or using a stock quote service can read the schema and what tags go into a stock
quote, allowing them to create and parse stock quote documents7.

The Simple Object Access Protocol (SOAP) is an XML language designed for communicating the
structure and values of an object between systems. The request and response messages used by web
services use SOAP to represent their content.

7.6.3 Finding a Web Service and its API

To be useful, a web service needs to advertise itself. This includes its locations (its URL) and
its public interface (API). It does so by registering a Web Services Description Language (WSDL)
document in a Universal Description Discovery and Integration (UDDI) registry. The basic model
is shown in Figure 7.7. Note that the UDDI registry contains the URL for the WSDL document,
not the actual document.

The WSDL document describes a service, including:

• the URL for the service,

7An XML schema is actually another XML document. Thinking a little recursively, there is also an XML schema

that describes schemas.

151

Figure 7.7: The basic pieces needed for a web service to be used.

• the public methods the service provides,

• arguments and types for the methods,

• the type of value returned from each method.

The UDDI registry entry contains:

• a reference (URL) to the WSDL document,

• information about the publisher of the service,

• a categorization of the service, and

• technical information about the service.

WSDL and UDDI are XML languages. Together the WSDL and UDDI documents for a service
provide a web service client the information it needs to successfully access the service.

One popular UDDI registry is http://www.xmethods.net. When you browse this site, you will
find thousands of web services. If you burrow down through a service’s links, you will find complete
descriptions of the service, including the WSDL document text.

When a programmer develops a web service client, they start by locating the WSDL documents
for any services they will use. Most modern IDEs, including NetBeans and Visual Studio .Net,
provide built-in methods to parse the WSDL documents and autogenerate code to make calls to the
services methods. The programmer only has to write the client code that uses the service.

7.6.4 Summary of XML Uses in Web Services

We have thrown a lot of jargon and acronyms into this section, so here is a summary:

152

Term Description

XML eXtensible Markup Language: a generalization of html. Tags surround the content
of a document. They are used to add meaning and formatting information. XML
is used in numerous ways in web services.

WSDL Web Service Description Language: the XML language for describing a web service.
The wsdl document is used by a programmer to develop a web service’s client.

UDDI Universal Description Discovery and Integration: an XML language used to adver-
tise a web service. UDDI registries contain UDDI documents for many different
web services.

SOAP Simple Object Access Protocol: an XML language used to represent objects. It is
used for requests and responses in web services.

Schema An XML document that describes an XML language. Thus, there is a schema for
WSDL, UDDI, and SOAP. SOAP is also specialized for requests and responses in
a particular web service. Each of these also has a schema.

7.7 Developing a Web Service

It is possible to code a web service or a client from scratch. The only reason to do so, however, is to
thoroughly learn the underlying XML languages and protocols. Almost all popular languages have
IDEs associated with them that will autogenerate code to interact with clients. This abstracts away
the low-level details, allowing the programmer to concentrate on developing the service instead.

In this section we will develop a Java based web service using the NetBeans IDE. As briefly
discussed in the previous chapter, NetBeans is a free IDE available from http://www.netbeans.org.
It is packaged with several application servers making developing and deploying web services much
simpler.

7.7.1 Quadratic Equations Revisited

Our example is that of a quadratic equation solving service. Recall from high school that quadratic
equations have the form

ax
2 + bx + c = 0

a, b, and c are known as the coefficients. By changing a, b, and c we get different equations.

A solution to a quadratic equation is a value of x that makes the equality true. For example,

1x
2 +−3x + 2 = 0

has two solutions: x = 1 and x = 2 A quadratic equation may have 0, 1 or 2 solutions, depending
on its coefficients.

You probably also recall that this type of equation may be solved using the quadratic formula,
which is

x =
−b±

√
b2 − 4ac

2a

Our service will contain a single method, named solve(), which takes three parameters (a, b, and
c). It will use the quadratic formula to find and return the solutions to the equation.

153

7.7.2 Initial Steps

The initial steps to creating the web service in NetBeans are:

1. Create a new Project.

(a) In the dialogs choose Java Web and Web Application. Note that while we are not
creating a web application as described in the previous chapter, we are using the same
infrastructure, e.g. application servers and servlet classes.

(b) Name the project anything appropriate.

(c) Choose any installed application server. The authors recommend choosing Glass Fish

V2, as it allows the programmer to interactively test the web service.

(d) Click Finish.

2. Right click on the project icon and choose New Web Service. Name it QuadraticService.
Name its package QuadService. This will generate the class stub shown below.

1 package QuadService ;
2
3 import javax . jws . WebService ;
4
5 /∗∗
6 ∗
7 ∗ @author Stu Hansen
8 ∗/
9 @WebService ()

10 public class Quadrat i cServ i ce {
11
12 }

Lines Commentary

3 Note the auto-generated import statement, that brings in the WebService interface.

9 The @WebService() annotation makes our class into a web service.

7.7.3 Web Service Annotations

Beginning with Java 1.5, the language has included annotations. Annotations are meta-data, de-
scribing some aspect of the code. An annotation begins with the @ symbol and includes information
and directives for tools processing the Java file.

Some annotations are used directly by the Java compiler. For example, @Override before a
method name tells the compiler that this method is meant to override a method in a super class. If
the signature of the method is incorrect, and it doesn’t override a super class method, the compiler is
required to generate an error. @Override is not required, nor does it affect the byte code generated.
Instead, it is meant as a means of helping the programmer manage their code, guaranteeing that
the signature of the method is correct.

Other annotations are used by different tools besides the compiler. For example, Sun’s SDK
includes wsgen and wsimport. These are command line tools to generate web service artifacts
including classes and script files used to develop, deploy and invoke web services. Because we are

154

working within NetBeans, we will not call these tools directly. NetBeans will do it for us. The
three annotations we will use that are recognized by these tools are: @WebService, @WebMethod,
and @WebParam.

7.7.4 Completing the Web Service

We complete our web service by writing and annotating the solve() method. NetBeans has a GUI
tool to help programmers define web methods. This is available by clicking the Design tab at the
top of the editor pane. The annotations in our example are simple enough that they can easily be
entered manually, too.

1 package QuadService ;
2
3 import javax . jws .WebMethod ;
4 import javax . jws .WebParam ;
5 import javax . jws . WebService ;
6
7
8 /∗∗
9 ∗ A web s e r v i c e wi th e x a c t l y one method .

10 ∗ The method s o l v e s quadra t i c equa t i ons .
11 ∗
12 ∗ @author Stu Hansen
13 ∗ @version Apr i l 2009
14 ∗/
15 @WebService (name = ”Quadratic ” , serviceName = ” Quadrat i cServ i ce ”)
16 public class Quadrat i cServ i ce {
17 @WebMethod(operationName = ” so l v e ”)
18 public double [] s o l v e (@WebParam(name = ”a”) double a ,
19 @WebParam(name = ”b”) double b ,
20 @WebParam(name = ”c”) double c) {
21 double [] r e s u l t s = new double [2] ;
22
23 // Because Java ’ s doub l e s use I n f i n i t y and Nan , we don ’ t need to
24 // worry about e x c ep t i on s .
25 double d i s c r im inant = b∗b − 4∗a∗c ;
26 r e s u l t s [0] = (−b + Math . s q r t (d i s c r im inant))/ (2∗ a) ;
27 r e s u l t s [1] = (−b − Math . sq r t (d i s c r im inant))/ (2∗ a) ;
28
29 return r e s u l t s ;
30 }
31 }

155

Lines Commentary

3–5 Our import statements need to be expanded to include all three types of
annotations.

15 We expand the @WebService() annotation including name and serviceName pa-
rameters. These will be used later when developing the client in order to identify
the service.

17 The @WebMethod annotation declares solve() to be a method that will be exposed
in the web service’s API. The operationName parameter just tells us that it will
still be called solve.

18–30 The solve() method solves the quadratic equation using the quadratic formula.
Because there may be up to two solutions, we return an array of doubles. Java’s
double uses Infinity and Not a Number (Nan) for divide by zero and taking the
squareroot of a negative. Thus, no exception handling code is needed.

18–20 Each parameter is annotated with @WebParam. The name parameter for each tells
us that each parameter will retain its own name (a, b, and c) in the web service.

7.7.5 Testing and Deploying the Web Service

As with any distributed computation, things become much more complex when we use multiple
computers with a network joining them. As such, common sense tells us that we should test our
web service locally, as much as possible, before deploying it. The QuadraticService class in our
example, is just another Java class. The annotations do not affect our ability to test the code locally.
We can (and should) write JUnit tests or a test main() to exercise the code removing any bugs
discovered.

Deploying the web service is a matter of installing our web service class, along with autogenerated
code onto an application server. NetBeans makes this easy. It has autogenerated an Ant deployment
descriptor, web.xml. Right click on the project icon and choose Deploy. It may take several minutes
to start the application server and deploy the web service, but it will all happen without further
programmer intervention.

If you are using the Glass Fish v2 application server, after the service is deployed, it can be
tested interactively. In NetBean’s Projects window, expand the Web Services folder by clicking on
the + sign. Right click on QuadraticService and choose Test Web Service. NetBeans will open a
browser and display a page containing a form that lets you interactively enter a, b, and c. When you
click the solve button, the browser sends a request to the web service, which returns the solution
to the quadratic8.

7.7.6 WSDL and Schema Revisited

How could NetBeans generate a web page to test the service? It must know where the service is
located and its public API. This is exactly the information stored in the wsdl and schema documents
for the service. These are quite long and complex, and we have chosen not to include them here.
The key ideas to remember is that they allow the dynamic testing of the service, and shortly will be
used to develop the web client.

8Way cool!

156

Request and Response Documents

The web service is incorporated into a servlet on the application server. Unlike the servlets in the
previous chapter, however, the requests and responses to this servlet are XML documents. The form
of these documents is specified in the web service schema.

Below is a sample request document for our web service:

1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
2 <S : Envelope xmlns : S=”http :// schemas . xmlsoap . org / soap/ enve lope /”>
3 <S : Header/>
4 <S : Body>
5 <ns2 : s o l v e xmlns : ns2=”http :// QuadService /”>
6 <a>1.0
7 0.0

8 <c>−4.0</c>
9 </ns2 : so lve>

10 </S : Body>
11 </S : Envelope>

Lines Commentary

2 SOAP documents are surrounded by a SOAP envelope. Note that this tag tells us
where the schema for SOAP documents is located.

4–10 This is the body of the request.

5 & 9 We are making a request to the solve() method.

6–8 The call to solve() takes three parameters, a, b, and c.

Here is the response document:

1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
2 <S : Envelope xmlns : S=”http :// schemas . xmlsoap . org / soap/ enve lope /”>
3 <S : Body>
4 <ns2 : so lveResponse xmlns : ns2=”http :// QuadService /”>
5 <return>2.0</return>

6 <return>−2.0</return>

7 </ns2 : so lveResponse>

8 </S : Body>
9 </S : Envelope>

Lines Commentary

4–7 This is the body of the response to our request.

5–6 Two values are returned. 2.0 and -2.0 are the solutions to the quadratic equation
sent in the request.

157

7.8 Developing a Web Service Client

One of the strengths of the web service model is that clients can be web browsers, other web
servers, or standalone applications. In this section we develop a standalone client that consumes the
quadratic web service.

Figure 7.8: The GUI for the Quadratic Web Service Client.

7.8.1 Initial Steps

Figure 7.8 shows the GUI for the quadratic equation web service client. The user enters numbers
for the coefficients of the equation and then clicks the Solve button. A message is sent to the web
service, which responds with the solutions.

The initial steps to begin developing the client are:

1. Create a new NetBeans project. For this example, standard Java Application project is fine,
although almost any type of project will work.

2. Import the web service wsdl. Make certain the web service has been deployed, then:

(a) Right click on the project icon and choose New -> Web Service Client.

(b) Since the web service is a NetBeans project developed on the same machine as the client,
we leave the Project button checked.

(c) Choose Browse. Navigate to QuadraticWebService -> QuadraticService.

(d) Click OK, followed by Finish.

3. NetBeans will autogenerate proxy objects that will take care of all of the communication with
the service. A new folder should appear in the project labeled: Web Service References. A
number of Java files are generated. You don’t need to do anything with these files, but you can
see them by choosing the Files tab, then navigating to build -> generated -> wsimport

-> client -> quadservice. The files include: Quadratic.java, QuadraticService.java,
Solve.java and SolveResponse.java, as well as a couple of other support classes.

7.8.2 Completing the Client

Most of the code for the application is GUI code. Here we show only the snippets relevant to the
web service exchange. The entire project is available for download from the text’s website.

158

2 import quadse rv i ce . Quadratic ;
3 import quadse rv i ce . Quadrat i cServ i ce ;

Lines Commentary

2–3 We import the two classes that act as the proxy for the service.

116 // A l l the work i s done in the bu t ton ’ s hand ler .
117 // We go to the s e r v i c e , s o l v e the equat ion and d i s p l a y the r e s u l t s
118 private void jButton1ActionPerformed (java . awt . event . ActionEvent evt)
119 {
120 // We need a r e f e r ence to the proxy (the Port) in order to c a l l
121 // methods in the web s e r v i c e
122 Quadrat i cServ i ce quadServ ice = new Quadrat i cServ i ce () ;
123 Quadratic quad = quadServ ice . getQuadrat icPort () ;
124
125 // Parse the c o e f f i c i e n t s
126 double a = Double . parseDouble (aF ie ld . getText ()) ;
127 double b = Double . parseDouble (bFie ld . getText ()) ;
128 double c = Double . parseDouble (cF i e l d . getText ()) ;
129
130 // Find and d i s p l a y the s o l u t i o n .
131 // Note t ha t the array o f doub l e s in the s e r v i c e code has become a
132 // l i s t in the proxy .
133 List<Double> s o l u t i o n s = quad . s o l v e (a , b , c) ;
134 s o l u t i on sLabe l . setText (”x1 = ” + so l u t i o n s . get (0) +
135 ” , x2 = ” + s o l u t i o n s . get (1)) ;
136 }

All of the interaction with the web service takes place in the button’s handler.

Lines Commentary

122 &
123

We obtain a reference to the web service by instantiating a QuadraticService

object and then getting its port object. Note that these two names come from the
@WebService annotation inserted in the web service class.

126–128 Convert the quadratic coefficients from Strings to doubles.

133 Call the solve() method on the web service via its proxy. Note that the web service
class declared the return type to be double [], but here we use a List<Double>.
This change of type was accomplished automatically, and was done because SOAP
knows how to work with lists of objects, but not arrays of primitives.

7.9 Making Web Services More Event Based

Web services, as we have seen them so far, lack several of the properties that we have discussed as
event based in earlier chapters. Since web services are servlets, they lack state, unless we use sessions
or other special techniques. They also follow an asynchronous request-response interaction pattern.

159

While asynchronous request-response is event based, it can be argued that either a message passing
system where no response is expected, or a publish-subscribe system is still more event based. For
example, if no response is expected, then messages can easily be multicast, without waiting for any
return messages.

7.9.1 Developing a Web Service with State

In this section, we show how to manage state in web services using session objects. Our example is a
continuation of the quadratic equation problem. Rather than have the client provide the coefficients
every time the service is called, however, we store the equations in session.

We only show code snippets for our web service in order to save space. As always, the complete
code for the example is available on the text’s website.

3 import javax . annotat ion . Resource ;
4 import javax . jws .WebMethod ;
5 import javax . jws .WebParam ;
6 import javax . jws . WebService ;
7 import javax . s e r v l e t . http . HttpServ letRequest ;
8 import javax . s e r v l e t . http . HttpSess ion ;
9 import javax . xml . ws . WebServiceContext ;

10 import javax . xml . ws . handler . MessageContext ;

Lines Commentary

3–10 The imports are expanded to include several additional classes.

3 Resources are another type of Java annotation used to direct Java to autogenerate
specific code. We will see it used below on line 23.

9 & 10 Two classes designed particularly to help us obtain and manage the session.

160

25 @WebService (name=”QuadraticWithState ” , serviceName=”Quadrat icWithStateServ ice ”)
26 public class Quadrat icServ iceWithState {
27
28 // Some v a r i a b l e s to he l p c r ea t e and manage a s e s s i on
29 private @Resource WebServiceContext webServiceContext ;
30 private MessageContext messageContext ;
31 HttpSess ion s e s s i o n ;
32
33 /∗∗
34 ∗ Web s e r v i c e opera t ion to c r ea t e an equat ion
35 ∗/
36 @WebMethod(operationName = ” c r ea t e ”)
37 public int c r e a t e (
38 @WebParam(name = ”name”) St r ing name ,
39 @WebParam(name = ”a”) double a ,
40 @WebParam(name = ”b”) double b ,
41 @WebParam(name = ”c”) double c) {
42
43 // We only c r ea t e a s e s s i on i f t h e r e i sn ’ t one a l r eady
44 i f (s e s s i o n == null) {
45 messageContext = webServiceContext . getMessageContext () ;
46 s e s s i o n = ((HttpServ letRequest) messageContext . get (
47 MessageContext .SERVLET REQUEST)) . g e tS e s s i on () ;
48 }
49
50 Quadratic temp = new Quadratic (a , b , c) ;
51 s e s s i o n . s e tAt t r i bu t e (name , temp) ;
52 //TODO wr i t e your implementat ion code here :
53 return 0 ;
54 }
55
56 /∗∗
57 ∗ Web s e r v i c e opera t ion to s o l v e the equat ion
58 ∗/
59 @WebMethod(operationName = ” so l v e ”)
60 public double [] s o l v e (
61 @WebParam(name = ”name”) f ina l St r ing name) {
62 Quadratic temp = (Quadratic) s e s s i o n . ge tAt t r ibute (name) ;
63 return temp . s o l v e () ;
64 }

161

Lines Commentary

23–25 Three instance variables to help us create and manage the session.

23 Note the use of @Resource. This directs Java to instantiate and make available the
WebServiceContext object. Our code never instantiates it, but can use it whenever
needed. It will appear in our code on line 39.

31–35 Our first method is now named create(). It takes four parameters.

32 name is used as the key when storing the equation in the session.

38–42 We check whether we have already created a session object. If not, we create a new
one.

39 Here, we use webServiceContext to help us create a session.

44 Quadratic is a private inner class used to represent quadratic equations. They are
the objects we store in the session.

45 Store the quadratic equation in the session.

53–58 solve() takes the name of the equation, looks it up in the session and solves the
equation.

56 We get the equation from the session.

162

7.9.2 Client for a Web Service with State

Developing a client for this web service follows much the same pattern as in the earlier example.
Here, we give a simple text based client.

1 import java . u t i l . L i s t ;
2 import quadrat i c . QuadraticWithState ;
3 import quadrat i c . Quadrat icWithStateServ ice ;
4
5 /∗∗
6 ∗ A simple c l i e n t t h a t manipu lates quadra t i c equa t i ons s t o r ed in a
7 ∗ web s e r v i c e .
8 ∗ @author Stu Hansen
9 ∗ @version Apr i l 2009

10 ∗/
11 public class Quadrat icCl ientWithState {
12 public stat ic void main (St r ing [] a rgs)
13 {
14 // We use two o b j e c t s to g e t to the s e r v i c e ’ s methods .
15 Quadrat icWithStateServ ice qSe rv i c e = new Quadrat icWithStateServ ice () ;
16 QuadraticWithState quad = qServ i c e . getQuadraticWithStatePort () ;
17
18 // Create two quadra t i c equa t i ons
19 quad . c r e a t e (”Easy” , 1 . 0 , 0 . 0 , −4.0) ;
20 quad . c r e a t e (”Tough” , 1 . 0 , 2 . 0 , −6.0) ;
21
22 // Work wi th an easy equat ion
23 List<Double> s o l u t i o n s = quad . s o l v e (”Easy”) ;
24 System . out . p r i n t l n (”The s o l u t i o n s to : ” + quad . t oS t r i ng (”Easy”)
25 + ” are : ”) ;
26 System . out . p r i n t l n (”x1 = ” + s o l u t i o n s . get (0)) ;
27 System . out . p r i n t l n (”x2 = ” + s o l u t i o n s . get (1)) ;
28
29 // Work wi th a harder equat ion
30 s o l u t i o n s = quad . s o l v e (”Tough”) ;
31 System . out . p r i n t l n (”The s o l u t i o n s to : ” + quad . t oS t r i ng (”Tough”)
32 + ” are : ”) ;
33 System . out . p r i n t l n (”x1 = ” + s o l u t i o n s . get (0)) ;
34 System . out . p r i n t l n (”x2 = ” + s o l u t i o n s . get (1)) ;
35
36 // Just to show tha t the ”Easy” equat ion i s s t i l l t h e r e
37 System . out . p r i n t (” Discr iminant o f ” + quad . t oS t r i ng (”Easy”) + ” i s : ”) ;
38 System . out . p r i n t l n (quad . getDi sc r iminant (”Easy”)) ;
39 }
40 }

163

Lines Commentary

16 & 17 The web service reference and its port/proxy object.

20 & 21 Create two quadratic equations and store them in the web service.

23–37 Exercise various methods available in this web service. Note that solve() now
takes the name of the equation, rather than the coefficients.

Here is the output from running the client program.

1 The s o l u t i o n s to : 1 . 0 xˆ2 + 0 .0 x + −4.0 = 0 are :
2 x1 = 2 .0
3 x2 = −2.0
4 The s o l u t i o n s to : 1 . 0 xˆ2 + 2 .0 x + −6.0 = 0 are :
5 x1 = 1.6457513110645907
6 x2 = −3.6457513110645907
7 Discr iminant o f 1 . 0 xˆ2 + 0 .0 x + −4.0 = 0 i s : 16 .0

@Oneway

Java web services also allow for @Oneway annotations. This annotation may be used with methods
that have a void return type9. @Oneway is designed to improve efficiency, so that clients will not
block waiting for a response from the server.

7.10 The Changing Landscape of Web Services

As stated earlier, the technologies and models used to develop web services continues to change.
This section briefly presents some of the changes.

7.10.1 Web Services Inspection Language(WSIL)

UDDI registries never really caught on. In recent years, several of the larger ones have even shut
down. One basic problem with them is that the client developer needs to refer to the UDDI document
(located in a registry) and the WSDL document (located on a web server). The Web Services
Inspection Language (WSIL) addresses this problem by combining the information found in the
UDDI and WSDL documents into one document. WSIL documents can be stored anywhere. They
don’t need a special registry. They are generally found on the same machine as the web service.
They can be shared publicly (if a service is trying to develop a clientele) or privately (if a service is
only for already established service partners).

7.10.2 SOAP versus JSON

Because they are text, SOAP documents are readable by both humans and computers. To enhance
human readability, we want each tag pair to be descriptive. For example, if we are describing
a person, we might very well have the tag pair, <firstName> and </firstName>. This makes for
verbose documents, however, as ”firstName” is spelled out completely twice. If a network connection
is slow, or there is a lot of network traffic, a long SOAP document will be slow to transmit.

9While Java’s web services do not include OUT or INOUT parameters, other languages support this feature, and

there are ways to make Java recognize them. @Oneway is also disallowed if these are used.

164

JavaScript Object Notation (JSON) is an alternative to SOAP. It is a light weight data-interchange
format. JSON describes objects using name value pairs. The stock quote document above might be
represented in JSON as:

1 {
2 ”Stock” : {
3 ”Symbol” : ”IBM” ,
4 ”Last ” : 82 .71 ,
5 ”Date” : ”12/15/2008” ,
6 ”Time” : ” 1 :00pm” ,
7 ”Change” : 0 . 51 ,
8 ”Open” : 82 .51 ,
9 ”High” : 82 . 86 ,

10 ”Low” : 80 .00 ,
11 ”Volume” : 3007015 ,
12 }
13 }

The code is shorter and possibly more readable.

JSON based web services have been becoming more popular in recent years.

7.10.3 RESTful Web Services

Roy Fielding, one of the principal authors of the HTTP specifications, developed the notion of
Representational State Transfer (REST) as an architectural style for hypermedia systems, including
the World Wide Web. REST is not a standard, but rather a set of principals for designing web
services. The key idea is to map resources to unique URIs. For example, each method in a web
service has its own URI. In the Java world, this is equivalent to saying that each method gets its own
servlet. By contrast, in a SOAP based system, the method name is part of the SOAP document.
The web service parses the document and then calls the method. There is a single servlet that does
the parsing and dispatching for all the methods.

There are several advantages claimed by RESTful web services:

• does not require a separate discovery mechanism, as all operations are URIs,

• may be more efficient on the server side, as results can be cached,

• depends less on vendor supplied software, as there is not need for additional messaging layers,
and

• provides better long term ability to evolve and change than other approaches.

7.10.4 Evolving Language Tools

A final problem to discuss is the changing set of tools available for developing web services and
clients. Using Java as an example, the early package for web services was JAX-RPC. This was
replaced with JAX-WS (WS stands for web services), which is not backwardly compatible with
JAX-RPC. Recently, with the growing popularity of RESTful web services, Java has come out with
JAX-RS. The situation is no better in other languages. Computer science students need to accept
that there will be ongoing demands to upgrade their knowledge and skills throughout their careers.
Web services is just one example of where this problem is currently a dominant theme.

165

7.11 Conclusion

Web applications are closely related to the event based paradigm. The web based front end generally
contains GUI elements similar to those found in standalone GUI apps. The communication with the
web server is asynchronous, because the browser does not know how long a request/response round
trip will take.

In other ways, web applications are quite far from the event based paradigm. The request/re-
sponse interaction with the server is blocking on the browser’s side. That is, after the browser
requests a new page, the browser blocks other user interactions until the page is loaded. The associ-
ation of handlers (servlet code) with particular requests is done statically. The best we can do is to
use request parameters to change the code that is executed via a switch statement, just as we did
in the Calculator example.

Web services are more event based. Since there may be many types of clients for a web service,
it is strictly up to the client developer to decide whether the client blocks of not. For some messages
sent to the server, no response is even required.

Web applications and services are still new. The technologies keep changing at an alarming fast
rate. The concepts of event based programming will continue to apply, however, regardless of the
technology that is currently hot.

166

Bibliography

[Angel, 2008] Angel, E. (2008). Interactive Computer Graphics: A Top-Down Approach Using
OpenGL, 5/E. Prentice-Hall.

[Beck and Andres, 1999] Beck, K. and Andres, C. (1999). Extreme Programming Explained: Em-
brace Change, 2nd ed. Addison-Wesley Professional.

[Beer and Heindl, 2007] Beer, A. and Heindl, M. (2007). Issues in testing dependable event-based
systems at a systems integration company. Proceedings of the The Second International Conference
on Availability, Reliability and Security, pages 1093–1100.

[Deitel and Deitel, 2007] Deitel, H. M. and Deitel, P. J. (2007). Java: How to Program, 7/E.
Prentice-Hall.

[Deitel et al., 2002] Deitel, H. M., Deitel, P. J., and Santry, S. E. (2002). Advanced Java 2 Platform:
How to Program. Prentice-Hall.

[Elliott et al., 2002] Elliott, J., Eckstein, R., Loy, M., and Wood, D. (2002). Java Swing, Second
Edition. O’Reilly.

[Englander, 1997] Englander, R. (1997). Developing Java Beans. O’Reilly.

[Food and Drug Adminstration, 2006] Food and Drug Adminstration (2006). Fda press re-
lease (august 28, 2006): United states marshals seize defective infusion pumps made
by alaris products–pumps can deliver excess medication and harm patients. On-
line. Internet. Available WWW:http://www.pritzkerlaw.com/alaris-infusion-pump-signature-
edition/index.htm#pressrelease.

[Gamma et al., 2000] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (2000). Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley.

[Hyde, 2003] Hyde, R. (2003). The Art of Assembly Language. No Starch Press.

[Johnson, 2000] Johnson, J. (2000). GUI Bloopers: Don’ts and Do’s for Software Developers and
Web Designers. Morgan Kaufmann.

[Lamport, 1978] Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21.

[Muhl et al., 1998] Muhl, G., Fiege, L., and Pietzuch, P. R. (1998). Distributed Event-Based Sys-
tems. Springer.

[Norris McWhirter, 1985] Norris McWhirter, e. (1985). The Guiness Book of World Records, 23rd
US edition. Sterling Publishing Co., Inc.

167

[Shreiner et al., 2007] Shreiner, D., Woo, M., Neider, J., and Davis, T. (2007). OpenGL Program-
ming Guide: The Official Guide to Learning OpenGL, Version 2.1, 6/E. Prentice Hall.

[Stallings, 2008] Stallings, W. (2008). Operating Systems: Internals and Design Principles, 6/E.
Prentice Hall.

[Tanenbaum, 2007] Tanenbaum, A. S. (2007). Modern Operating Systems, 3/E. Prentice Hall.

[Trewin and Pain, 1998] Trewin, S. and Pain, H. (1998). A model of keyboard configuration re-
quirements. In Assets ’98: Proceedings of the third international ACM conference on Assistive
technologies, pages 173–181, New York, NY, USA. ACM.

[Walrath et al., 2004] Walrath, K., Campione, M., Huml, A., and Zakhour, S. (2004). The JFC
Swing Tutorial: A Guide to Constructing GUIs (2nd Edition). Addison-Wesley.

168

