
Chapter 6

Distributed Event Programming

6.1 Introduction

Distributed computing involves multiple computers working together to accomplish some task. The
computers communicate with each other by sending messages back and forth across a network. This
model of computing is common in many real world applications. For example, browsing the Internet
involves a computer running a web browser and web servers feeding it pages. In addition, web
browsing requires other specialized services invisible to the user, but supporting the interactions,
such as the domain name server (DNS) which translates the URL the user enters to a binary form,
the IP address, that the network understands.

Another practical example of distributed systems are Enterprise Resource Planning (ERP) sys-
tems. Historically, different departments within a business purchased computing systems to help
them with their particular part of the business, e.g. payroll systems, inventory systems, human
resources systems, manufacturing systems, etc. These diverse systems need to work with each other
many business related tasks. For example, the sales system needs to work with the inventory system
to make certain there are enough of each product being purchases. ERP systems were developed to
fill this niche. Now, it is rare to find a company that is not running an ERP system like SAP or
JDEdwards.

6.2 The Big Picture

To understand distributed systems we start by looking at the big picture. There are three types of
things that participate in a computer application: data, computation and users. All three can be
distributed to various degrees.

Data and Information

Data may exist in a central repository, e.g. in a database, or on a file server. Remote computers can
then access them, as needed, either by making a local copy or by directly accessing the storage on a
remove machine. Data may also be distributed for a variety of reasons. For example, various groups
may own various parts of the data, e.g. as in the example above, the payroll department or the
inventory department own their own data, and store them on a machine local to their department.

Computer scientists have been distributing data for decades. Modern operating systems let us
mount remote file systems and treat them as if they are local. Languages like Java let us open
remote files and read from them using the same I/O classes as processing local files.

107



Information

The last decade has seen significant effort to structure data into information. Data are just values.
Information, by contrast, places the values into a context. For example, 39 is a datum.
<age>39</age> implies that we should treat 39 as an age. The eXtensible Markup Language
(XML) and a variety of its derivatives, are currently the dominant way of structuring data into
information. They use tags, as those shown here, to build hierarchical structures from the data. For
example,

<person>

<name>Erica Haller<\name>

<age>39<\age>

<profession>College Professor</profession>

<\person>

could be a simple XML structure describing a person.
If two separate computing systems are to access the information, they must first each understand

the structure of the data. to meet this need, XML introduced schema which describe the structure
of the data. Schema are XML documents that describe the structure of other XML documents.

Computation

Distributed computation takes place across spatially separated computing systems operating asyn-
chronously. This is different than multi-threading discussed earlier in the text. Multi-threading
gives us concurrency, but isn’t considered distributed, as the threads share the application’s code
and heap. Distributed systems are more loosely coupled, communicating with each only via well
defined protocols. For example, it is very common to have a database ”back-end” running on a sep-
arate computer from the rest of the application. This allows extra computing power to be dedicated
to running complex database queries and adds another level of security. The application sends a
query to the database. The database executes the query and returns the result.

Distributed computation is still an important area in computer science research. It poses some
ongoing interesting and challenging problems. For example, developing dynamic distributed systems,
where services and devices come online and go offline as needed, is still very difficult. Some progress
is being made. With protocols like Bluetooth, it is now possible for two devices to discover each
other, once they are within reasonable proximity.

Users

It may seem odd at first to talk about users as being distributed, but in many cases the primary
purpose of a distributed system is to coordinate distributed users. Online multiplayer games and
business professionals holding online meetings are both examples. The most typical paradigm used
for these applications is the client-server model, where each user interacts with client software, which,
in turn, interacts with the server.

6.3 Distributed System Infrastructures

Obviously, if we are going to build distributed systems, we need hardware and software infrastructure
to support the systems working together. A detailed understanding of networking hardware is
beyond the scope of this text. For our purposes you may assume that the computers being used
have a network card installed with a cable (or virtual cable) connected to it.
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Since this is a programming text we do need to gain an understanding of a variety of types and
levels of programming support supplied by various distributed computation infrastructures.

Low Level Primitives

At the lowest level, bytes of data are passed between two computers. Almost all programming lan-
guages include objects known as sockets to facilitate this computer to computer communication. A
socket is simply a stream of data flowing between two computers. It is completely up to the devel-
opers to decide what data should be sent and received and how that data should be interpreted.
On this level, the developers must deal with many subtle challenges. The program must potentially
contend with different hardware and operating systems, different implementation languages, unre-
liable data communication, crash/recovery scenarios, security, and much more. For these reasons
higher level abstractions are now commonly used.

Middleware

Middleware systems provide an infrastructure around which to build a distributed system. As the
name middleware implies, the software sits ’between’ the two communicating computers. Both
systems must have the middleware installed. The application program then communicates with the
middleware, which in turn takes over all low level details of communicating.

Middleware systems vary significantly based on the computing niche they are trying to serve.
Here are a few examples:

The Common Object Request Broker Architecture (CORBA)
CORBA was designed to facilitate integrating legacy systems. Legacy systems are pre-existing sys-
tems that are still filling a useful role in an enterprise. Two legacy systems may have been written in
different languages and run on different hardware with different operating systems. They may differ
in how they represent numbers, e.g. big-endian vs. little-endian, or in the order parameters appear
in a compiled method. The Common Object Request Broker Architecture, CORBA, abstracts away
these nasty differences. A CORBA implementation supplies libraries that allow an application to
communicate with an Object Request Broker, an ORB. Any system that can communicate with an
ORB can communicate via the ORB with any other CORBA based system.

Web Services
The World Wide Web infrastructure is immense. There are millions of web servers running and
millions upon millions of web browsers accessing them. Not only that – amazingly, it all works. A
user sitting in Kenosha, WI can call up a web page on a server in Bangalore India, and it will arrive
in just a few seconds. One of the things that makes the web work so well is that it is built on top
of very well understood languages and protocols, e.g. html and http.

Web services take advantage of the web infrastructure to build distributed applications. Web
services are programs that run on web servers. Because they are programs, they can provide more
complex services than just returning simple web pages. Web services receive requests for informa-
tion and return results in XML documents. Because HTML and XML are closely related tagged
languages, the web infrastructure works well with both.

Jini
Jini is a Java based infrastructure developed to implement service oriented dynamic distributed sys-
tems. Service and dynamic are central to Jini’s intended use. A Jini network is made up of services
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that are used by clients. The service may be a chat service, or a toaster1. Dynamic means that
the services availability can change. New services can join the network. Others may crash or have
network failures. When a service comes online, it advertises itself. When a client wants to use an
available service, it sends the service requests. Building robust, dynamic distributed systems is still
one of the major ongoing challenges in distributed systems research. Jini is a step in that direction.

Advanced Infrastructures

There are dozens of other distributed system infrastructures. Some are production level and compete
directly with those above. Other are research tools. Distributed systems programming is still a
research field in academia, and more tools are always being developed.

6.4 Event Based and Distributed Systems

Conceptually, event based and distributed systems have much in common. They are both made up
of different parts running fairly independently of each other. The parts communicate by sending
discrete messages to each other.

More specifically, many of the properties discussed in Chapter 1 apply to both types of systems.

Loose Coupling

Agents in distributed systems are loosely coupled in ways very similar to the source handler coupling
in event based systems.

Dynamic Binding

Event based systems register handlers at runtime. Distributed systems go through a setup phase
similar to handler registration. In a distributed system, a program begins running on each system.
Sometime thereafter communication links are established between them.

Nonblocking

In general, event sources do not block, but continue to run, not waiting for handlers to complete.
Similarly, in many distributed systems messages may be sent to remote agents and the local process
continues running, not waiting for the remote computer to complete or return a message. If a return
message, e.g. a result, is expected, a common model is to listen for it using a separate thread.

Decentralized Control

We say that event based systems use decentralized control because an event can cause a handler to
execute in object A and a different handler to execute in object B. Each of these can fire ten more
events that run handlers in still different parts of the code. Each handler takes responsibility for
carrying out some part of the overall computing task, but there is no centralized authority taking
charge of completing the task.

Processing in distributed systems can be very similar. Messages are passed from system to
system, each carrying out its responsibilities, but again with no particular system in charge. The
message senders assume that the receiving agent knows what it is supposed to do.

1Toasters serve us toast, don’t they?
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Nondeterminism

Both types of systems contain nondeterminism. As we have seen, the order in which events are
handled may not be the same as the order in which they were fired. It depends on the underlying
infrastructure. The network introduces significant nondeterminism in a distributed system. There
may be arbitrarily long delays between when the message is sent and when it is received. Similarly,
the order the packets arrive may not be the same as the order in which they were sent. It depends
on their route through the network and the network load.

6.5 Publish - Subscribe

There are several additional ways that distributed systems may be even more event driven. First,
as introduced in Chapter 1, many distributed systems work on a publish-subscribe basis. That is,
System A registers its interest in receiving information of Type X from System B. Any time this
information becomes available, B sends it to A and all other registered subscribers. This interaction
motif closely parallels what happens between sources and handlers in event based systems.

Remote Events

A few distributed system infrastructures, e.g. CORBA and Jini, support remote events. These
services are the equivalent of the event infrastructure discussed in Chapter 3. Event sources, running
on one system, fire events to handlers located on a different system. The event service serves as
an intermediary. It receives the event from the source and queues it until the handler is ready to
process it.

6.6 Challenges Developing Distributed Systems

Programming distributed systems poses numerous challenges. In many ways these challenges parallel
those of developing event based systems.

Shared Resources

If you have multiple processes competing for resources, you introduce the possibility of deadlock,
where each process is waiting for a resource another holds, so no one makes progress. These types
of problems also exist in any multitasking operating system. Solutions can be implemented using
semaphores and monitors, but designs need to be very carefully thought through.

Nondeterminism

In a distributed system there is no way of knowing how fast remote processes are executing or how
long messages will take to be delivered. This means that messages may be sent and arrive in many
different orders. Each process in the system should continue functioning correctly, regardless of the
order the messages are received.

Unreliable Networks

Distributed systems depend directly on an underlying network to communicate. Networks are much
more reliable than they were in the past, but failures still occur. Packets, messages between two
nodes in our system, may be dropped. Robust distributed systems should be able to recover from
dropped packets and temporary network outages.
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Failure and Recovery

Computer hardware and software fails. Distributed systems should be able to recover from transient
failures. By this, we mean that if a node fails and is brought back to life, the computation should
be able to continue. Consider an RSS feed. Users subscribe to an RSS feed about some topic, say
rugby news. Any time there is some new rugby news, the feed sends all registered users the story.
If the RSS feed fails and recovers, users should not have to re-subscribe.

Security

Distributed systems contain more potential security risks than standalone applications. Each process
in the application needs to be secured, as does the communication between them.

6.7 The CORBA Infrastructure

The authors chose CORBA as the distributed system infrastructure for their examples in this chap-
ter. The Object Management Group (OMG) designed CORBA as a specification, not an implemen-
tation. Different vendors provide their own CORBA implementations. As such, CORBA is platform
independent and avoids issues involving programming languages and operating systems. For exam-
ple, an accounting system, written in COBOL, running on an IBM mainframe, can communicate
using CORBA with a payroll system written in C++, running on a Linux machine.

CORBA has been around long enough to have many solid implementations. A CORBA imple-
mentation comes with Sun’s Java SDK making it widely available. Our examples will use this Java
implementation, but here are CORBA implementations for most operating systems and program-
ming languages.

Like any major software technology, there is a lot to learn before you can claim to be proficient in
it. CORBA is no exception, and the reader should not expect to be an expert CORBA programmer
when they have finished reading this chapter. Introductory CORBA can be cookbooked, however.
That is, the 20-30 lines of CORBA code that a process needs can be borrowed from other examples
with only minimal changes. Also, CORBA doesn’t require as much detailed technical knowledge to
run as many of the others infrastructures. This makes it quicker for students to jump start their
programming.

6.7.1 Services, Tools and Classes

Perhaps the easiest way to understand CORBA is to think about the CORBA infrastructure as
consisting of three different types of entities: services, tools and classes. The services are predefined
CORBA objects that we will run along with our application code. The tools are compilers and
other assorted software that we will use while we are developing our programs. The classes are
programming language classes that we will depend on within our code.

CORBA Services

The CORBA specification contains a dozen optional services that may be delivered by a CORBA
provider. Here we will discuss only two:

• Name Service

In any distributed system, agents need to find each other. A web browser needs to find the
web server before it can download a page. An airline reservation system needs to find the
database of flight information before it can make a reservation. CORBA is no exception. Our
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code, a CORBA client, needs to find other CORBA objects before it can communicate with
them. CORBA objects are located using their Interoperable Object Reference (IOR). The IOR
is a binary string containing, among other things, the IP and port where the service may be
found. There are multiple ways a client may obtain a service’s IOR:

– We can hardcode into our client the IORs for other CORBA objects. This has major
drawbacks, however. If the service moves to another system, for example, you have to
change your program, too..

– We can give the location of the remote CORBA objects as runtime parameters, or as
program input. This, too, would work, but if our program needs to interact with many
services, the input becomes excessive.

– The most elegant solution is to use the CORBA name service. The name service is a
CORBA object that maintains a table of names and IORs. We can use CORBA’s name
service to keep track of where CORBA objects are located. CORBA objects register with
the name service. Other CORBA objects query the name service which returns the IOR
of the desired service.

The observant reader will notice immediately that the name service, by itself, does not com-
pletely solve the problem. We still need to find the location of the name service, and we can’t
use the name service to find it! The problem is much simpler, however, as we only need to
find the name service, which can then provide us with the location of other the other CORBA
objects. An easy solution to this problem is to pass the location of the name service as runtime
parameters, which is the approach we take in our examples. More on what those parameters
look like in the section below.

The name service delivered with Sun’s CORBA implementation is the Object Request Broker
Daemon (orbd). orbd is a standalone application that we will start at the command line, just
as we will start our own processes.

• Event Service

The CORBA event service provides a delivery mechanism for distributed events. Remote
events behave much like local events. There are times when we don’t need to call a method
on a remote object, we just need to notify the object that something of interest has occurred.
CORBA event sources fire their events to the event service, which takes responsibility to de-
livering them to the handlers. Unfortunately, Java’s SDK does not provide a CORBA Event
Service and it is not discussed further here.

CORBA Tools

In CORBA terms, the public interface accessible by other CORBA objects is known as as a service,
and the objects that implement the service are known as servers. CORBA clients access the service
by calling the server’s methods2.

CORBA defines a ”meta-language”, the Interface Definition Language (IDL) to represent the
signatures of the methods a CORBA service provides. These are the methods that other CORBA
objects can access remotely. IDL is necessary because the different CORBA objects may be written
in different languages. IDL is the universal language for all CORBA implementations.

2Note, however, that there is nothing stopping a CORBA object from being both a client and server. That is, a

CORBA object can both provide services to others and call on other servers. The only real requirement is that a

CORBA service needs to have its public interface defined.

113



Compiling IDL is a two step process. First, IDL descriptions are compiled into source code
of another high level language, in our case, Java. If two CORBA objects are written in different
languages, however, then different IDL compilers are used to generate the appropriate source code in
each language. The IDL generated source code is later compiled, along with the rest of the CORBA
object, using a standard language compiler, e.g. g++ or javac.

The primary CORBA tool we will need to develop our applications is the IDL compiler, idlj.
idlj comes with Sun’s Java SDK.

CORBA Interfaces and Classes

The Java package hierarchy beginning org.omg.* contains literally hundreds of Java interfaces and
classes for CORBA development. In one chapter, we can’t hope to acquaint the reader with all of
them, but it is possible to write CORBA based programs with a working knowledge of only a few.

• Object Request Broker
At the heart of CORBA is the Object Request Broker (ORB). It is the ORBs that supply the
communication infrastructure. The ORBs communicate with each other, and pass information
on to our application objects. Every process in our application will be associated with an ORB.
If our accounting system can communicate with an ORB and our human resources system can
communicate with an ORB, then they can communicate with each other.

• Portable Object Adapter
Portable Object Adapters (POAs) sit between the ORB and the service. They help the ORB
call methods in the service and pass the results back to the ORB. Since each service will have
its own collection of methods, POAs are specialized to a particular service.

Figure 6.1 shows the structure of a client/server call in CORBA. The developer writes the Client

and the Server. The ORBs are supplied by CORBA. Stubs and POAs are generated by idlj. The
stub implements the required methods, but does not carry out the operations itself. Instead, the
stub uses the ORB to communicate with the server, where the work is done. The server provides
concrete implementations of the methods. Results are returned along the reverse path to the client.

Figure 6.1: The main objects involved in invoking a remote CORBA service from a client.
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Figure 6.2: The Graphical User Interface for the calculator.

6.7.2 CORBA Programming Steps

The following steps are used to create and run CORBA based programs.

1. Design the system
Designing a distributed system requires more work than a standalone application. The designer
needs to decide different agents will be involved and what will be the responsibilities of each.
The examples in this chapter are intentionally contrived to use a very small number of agents,
but in the real world there may be hundreds of agents collaborating on some task, and the
design decisions are far from trivial.

2. Develop the IDL
Create and compile the idl description for each of the service agents. If you have done a good
job in Step #1, this should follow easily.

3. Implement the Agents
Implement the system agents, both the clients and the servers, using the interfaces and classes
developed in Step #2.

4. Start Everything Running
It is frequently the case in distributed systems that the various agents must be started in a
particular order. With CORBA we will generally start the name service, then our servers,
finally the clients.

6.8 Calculator Example

In the remainder of this chapter we present several small CORBA examples. Only illustrative code
fragments are included. Complete source code for each of the examples is available from the text
website.

Our first example is that of a calculator. In practice, there is really no point in having a
distributed service to do simple math. However, a calculator is a well understood application so it
serves as a nice introductory example.

Figure 6.2 shows the calculator’s interface. The user enters two integers and the calculator
performs one of three operations, addition, subtraction or multiplication, on them.
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6.8.1 Defining the IDL

Our calculator service is simple. It provides three operations, addition, subtraction and multiplica-
tion. Below is our IDL file that contains the declares our service.

1 /∗ Ca l cu l a t o r . i d l
2 ∗ This f i l e con ta ins the i n t e r f a c e d e f i n i t i o n s f o r a s imple c a l c u l a t o r
3 ∗
4 ∗ Written by : S tuar t Hansen
5 ∗
6 ∗/
7 module c a l c u l a t o r {
8 interface Calcu la to r {
9

10 // A method to add two numbers
11 long add ( in long a , in long b ) ;
12
13 // A method to s u b t r a c t two numbers
14 long sub ( in long a , in long b ) ;
15
16 // A method to mu l t i p l y two numbers
17 long mult ( in long a , in long b ) ;
18 } ;
19 } ;

IDL is a meta-language. It provides reserved words and data types that can be translated into
high level programming languages. The IDL constructs in this example match fairly closely with
Java’s, but not exactly.

module translates to be package in Java.
interface remains interface.
long translates to Java’s int3.

The in in front of the long as part of a parameter declaration declares the parameter to be pass
by value. That is, a and b are copied to the server, but are not returned. Java already uses pass
by value for primitive parameters, so this presents no problems. Other legal parameter descriptors
are out and inout. Java does not support copy out, or copy in and out parameters, so additional
support classes called holders, are needed to use these. This example does not use out or inout

parameters, so holders aren’t needed.

6.8.2 Compile the IDL file

Java’s IDL compiler, idlj, can be found in the bin directory of the JRE. It translates the IDL
description into Java source code. It generates the stub and the POA classes discussed above as well
as a few other interfaces and classes. The idlj command to translate this file is:

idlj -fall Calculator.idl

The -fall option tells idlj to generate all the CORBA classes needed to complete both the client
and the server. The files generated are:

• CalculatorOperations.java and Calculator.java are interfaces containing the Java decla-
rations for the Calculator. The contents of CalculatorOperations.java are:

3If you want a Java long, use IDL’s long long.
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1 package c a l c u l a t o r ;
2
3
4 /∗∗
5 ∗ c a l c u l a t o r /Ca lcu la torOpera t ions . java .
6 ∗ Generated by the IDL−to−Java compi ler ( p o r t a b l e ) , v e r s i on ”3.1”
7 ∗ from Ca l cu l a t o r . i d l
8 ∗ Monday , February 2 , 2009 9 :18 :49 AM CDT
9 ∗/

10
11 public interface Calcu la torOperat ions
12 {
13
14 // A method to add two numbers
15 int add ( int a , int b ) ;
16
17 // A method to s u b t r a c t two numbers
18 int sub ( int a , int b ) ;
19
20 // A method to mu l t i p l y two numbers
21 int mult ( int a , int b ) ;
22 } // i n t e r f a c e Ca lcu la torOpera t ions

Note how neatly each of the idl methods translated to a Java method.

Calculator.java contains an interface that extends CalculatorOperations and CORBA’s
Object class. Our calculator client will access methods from an object that implements
Calculator, since it will implement add(), etc. and will be a CORBA Object.

• CalculatorPOA.java contains an abstract class that implements CalculatorOperations. It
does not implement any of the methods from CalculatorOperations, however. To complete
our server, we will extend CalculatorPOA and define the methods.

• CalculatorHelper.java contains some useful static methods.

• CalculatorStub.java contains some CORBA methods to facilitate communications on the
client end. Client code will not interact with it directly however, but will do so through the
CalculatorHelper class.

• CalculatorHolder.java is a wrapper class used for out and inout parameters. Since our
example contains neither, this class is not used.
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6.8.3 Completing the Server

To complete coding the server, we will extend CalculatorPOA, implement the methods required by
CalculatorOperations and write a constructor that does some CORBA setup.

1 import c a l c u l a t o r . ∗ ;
2 import org . omg .CORBA. ∗ ;
3 import org . omg . CosNaming . ∗ ;
4 import org . omg . Por tab l eServer . ∗ ;
5 import org . omg . CosNaming . NamingContextPackage . ∗ ;
6
7 // This c l a s s implements a very s imple CORBA ser ve r .
8 // I t p rov i de s add , sub , and mult methods t ha t
9 // c l i e n t s may invoke .

10 //
11 // This Server r e qu i r e s t ha t a CORBA Name Serv i c e be running .
12 //
13 // Written by : S tuar t Hansen
14 // Date : February 2 , 2009
15 public class Ca l cu l a to rSe rve r extends CalculatorPOA {
16
17 private ORB orb ; // the orb f o r t h i s s e r v e r
18 private POA rootpoa ; // the roo t POA fo r t h i s s e r v e r
19
20 // The cons t ruc t o r s e t s up the ORB fo r communication
21 public Ca l cu l a to rSe rve r ( S t r ing [ ] a rgs )
22 {
23 setUpServerORB ( args ) ;
24 }
25
26 // implement the add method
27 public int add ( int a , int b)
28 {
29 return a + b ;
30 }
31
32 // implement the sub method
33 public int sub ( int a , int b)
34 {
35 return a − b ;
36 }
37
38 // implement the mult method
39 public int mult ( int a , int b)
40 {
41 return a ∗ b ;
42 }
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Lines Commentary

1–5 Import various CORBA packages which contain supporting classes.

17–18 Declare the ORB and POA variables that we will use to facilitate communication.

20–24 Define the constructor which calls a setup routine to initialize our ORB.

26–42 Define the service methods declared in the idl and CalculatorOperations.

Setting up the CORBA Communication

The final programming step to complete the server is to set up the CORBA communications. Below
is the listing of the method, setUpServerORB(), that accomplishes this. setUpServerORB() may at
first seem complex with obscure CORBA method calls, but we will analyze it line by line, to show
how it accomplishes its tasks. For those readers not interested in the details, the same method can
be used for almost any server side application, just replacing all references to ”Calculator” with the
name of your server.
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44
45 // This method se tup s the Server ORB
46 public void setUpServerORB ( St r ing [ ] a rgs )
47 {
48 try{
49 // c rea t e and i n i t i a l i z e the ORB
50 orb = ORB. i n i t ( args , null ) ;
51
52 // ge t r e f e r ence to rootpoa & a c t i v a t e the POAManager
53 rootpoa = POAHelper . narrow (
54 orb . r e s o l v e i n i t i a l r e f e r e n c e s ( ”RootPOA” ) ) ;
55 rootpoa . the POAManager ( ) . a c t i v a t e ( ) ;
56
57 // Convert our s e r v e r to a CORBA ob j e c t and IOR
58 org . omg .CORBA. Object r e f =
59 rootpoa . s e r v a n t t o r e f e r e n c e ( this ) ;
60 Ca l cu la to r c a l c = Ca lcu la to rHe lpe r . narrow ( r e f ) ;
61
62 // Look up the Name Serv i c e
63 org . omg .CORBA. Object nameServiceObj =
64 orb . r e s o l v e i n i t i a l r e f e r e n c e s ( ”NameService” ) ;
65 NamingContextExt nameService =
66 NamingContextExtHelper . narrow ( nameServiceObj ) ;
67
68 // Bind ( r e g i s t e r ) the Ca l cu l a t o r Server wi th the Name Serv i c e
69 St r ing name = ” Ca l cu l a to rSe rve r ” ;
70 NameComponent path [ ] = nameService . to name ( name ) ;
71 nameService . reb ind ( path , c a l c ) ;
72
73 System . out . p r i n t l n ( ” Ca l cu la to r Server Ready” ) ;
74
75 // wai t f o r c l i e n t r e qu e s t s
76 orb . run ( ) ;
77
78 } catch ( Exception e ) {
79 System . e r r . p r i n t l n ( ”ERROR: ” + e ) ;
80 e . pr intStackTrace ( System . out ) ;
81 }
82 }
83
84 // The main program simply c r ea t e s a new Ca l cu l a t o r Server
85 public stat ic void main ( St r ing [ ] a rgs ) {
86 new Ca l cu l a to rSe rve r ( args ) ;
87 }
88 }
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Lines Commentary

45 The parameters coming into setUpServerORB() come from the main() method and
contain the location where the name service, orbd, is running. See the section below
on starting the application.

49 Initialize the ORB. We pass along the name service location to the ORB. In our
case, the second parameter is null, but could contain a list of application specific
properties. Note that you do not construct an ORB, only call its init method.

52-54 Set up the POAs for our system. POAs exist in a hierarchical structure. For
this example we really don’t need to worry about multiple POAs, but there is one
rootPOA for our server.

52-53 Ask the ORB to give us a reference to the rootPOA. Wrap this request with a call
to narrow(). Narrowing is CORBA’s equivalent of casting to a more specific type.
Line 53 returns a CORBA object. narrow() converts it to a rootPOA.

54 Activate the rootPOA’s manager.

56-70 Register our server with the name service.

56-59 Convert our server (this) to a CORBA object, using the rootPOA.

62-65 Request a reference to the name service from the orb and again narrow it to be a
name service (NamingContextExt) object.

68-70 Register our server with the name service.

75 Place the ORB into listening mode, actively waiting for requests from clients. Note
that the ORB executes run() in the current thread. Because run() waits for clients
to send requests to the server, any code following run() will not be reached.

77–80 Handle exceptions. Most exceptions that occur when starting out programming
CORBA will be for null references. For instance, if the name service is not running,

orb.resolve_initial_references("NameService");

will return null. An exception will be thrown on the next line, where we try to
narrow it to be a NamingContextExt. The problem is not with the narrowing, but
with the null reference.

83–86 The main() method simply creates a CalculatorServer.

6.8.4 The Client

Much of the code for the client is GUI programming, which while event based, is not of interest to
us in this chapter. We show only the portions of the code that are central to our understanding of
CORBA.
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1 import c a l c u l a t o r . ∗ ;
2 import org . omg .CORBA. ∗ ;
3 import org . omg . CosNaming . ∗ ;
4 import org . omg . CosNaming . NamingContextPackage . ∗ ;
5
6 import java . awt . ∗ ;
7 import java . awt . event . ∗ ;
8 import java . u t i l . ∗ ;
9 import javax . swing . ∗ ;

10
11 // This c l a s s implements a s imple c a l c u l a t o r c l i e n t program .
12 // I t r e l i e s on a CORBA ser ve r to do the a c t ua l c a l c u l a t i o n s
13 //
14 // Written by : S tuar t Hansen
15 //
16 public class Ca l cu l a t o rC l i en t extends JFrame {
17
18 private Calcu la to r c a l c ; // the remote c a l c u l a t o r
19
20 // The GUI Components
21 private JLabel f i r s t L ab e l , secondLabel , r e s u l tLabe l ;
22 private JTextFie ld f i r s t , second , r e s u l t ;
23 private JButton addButton , subButton , multButton ;
24
25 // The cons t ruc t o r s e t s up the ORB and the GUI
26 public Ca l cu l a t o rC l i en t ( S t r ing [ ] a rgs )
27 {
28 setUpORB( args ) ;
29 setUpGUI ( ) ;
30 }

Lines Commentary

18 Declare a Calculator object. It looks like a local object and its methods will be
invoked just like a local object. The only difference will be when we instantiate it.

28 setUpORB() is shown below.

29 setUpGUI() is omitted to save space. The complete listing may be found the text’s
website.

88 // An inner c l a s s to handle c l i c k s on the add but ton
89 private class AddHandler implements Act ionL i s t ene r
90 {
91 public void act ionPerformed ( ActionEvent e )
92 {
93 int f irstNum = Int eg e r . pa r s e In t ( f i r s t . getText ( ) ) ;
94 int secondNum = Int eg e r . pa r s e In t ( second . getText ( ) ) ;
95 int resultNum = ca l c . add ( firstNum , secondNum ) ;
96 r e s u l t . setText ( In t eg e r . t oS t r i ng ( resultNum ) ) ;
97 }
98 }
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The interesting part of this handler is line 95 where we call calc.add(). As we will see below
calc is a reference to a CORBA object that handles all the communication with the server, but it
looks completely like a local object. All the communication with the server is completely hidden.
Subtraction and multiplication handlers follow the same pattern and are omitted.

124 // Set up the data communication wi th the s e r v e r
125 private void setUpORB( St r ing [ ] a rgs )
126 {
127 try {
128 // Create and i n i t i a l i z e the ORB
129 ORB orb = ORB. i n i t ( args , null ) ;
130
131 // Get a r e f e r ence to the name s e r v i c e
132 org . omg .CORBA. Object nameServiceObj =
133 orb . r e s o l v e i n i t i a l r e f e r e n c e s ( ”NameService” ) ;
134
135 // Narrow ( ca s t ) the o b j e c t r e f e r ence to a name s e r v i c e r e f e r ence
136 NamingContextExt nameService =
137 NamingContextExtHelper . narrow ( nameServiceObj ) ;
138
139 // Get a r e f e r ence to the c a l c u l a t o r from the name s e r v i c e
140 org . omg .CORBA. Object ca lcObj =
141 nameService . r e s o l v e s t r ( ” Ca l cu l a to rSe rve r ” ) ;
142
143 // Narrow ( ca s t ) the o b j e c t r e f e r ence to a c a l c u l a t o r r e f e r ence
144 c a l c = Calcu la to rHe lpe r . narrow ( calcObj ) ;
145
146 } catch ( Exception e ) {
147 System . out . p r i n t l n ( ”ERROR : ” + e ) ;
148 e . pr intStackTrace ( System . out ) ;
149 }
150 }
151
152 // The main s imply makes a new c a l c u l a t o r c l i e n t
153 public stat ic void main ( St r ing args [ ] ) {
154 new Ca l cu l a t o rC l i en t ( args ) ;
155 }
156 }

Setting up the client’s ORB follows a slightly different pattern than setting up the server’s. The
client does not register with the name service, since it is not receiving any calls from other objects.
For the same reason, its ORB will not be waiting to receive requests. On the other hand, the client
has to use the name service to find the calculator server.

Lines Commentary

129 Initialize the ORB.

131–137 Use the ORB to find the name service and narrow it to be a NamingContextExt, a
name service object. This code parallels that found in the server.

139-143 Use the name service to find the calculator server and narrow it to be a Calculator.
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6.8.5 Starting the Application

Three separate processes must be started to run our application, the name service, the server and
the client. They must be started in the order shown below.

orbd -ORBInitialPort 1060

java CalculatorServer -ORBInitialPort 1060

java CalculatorClient -ORBInitialPort 1060

orbd is the Java’s CORBA name service. The -ORBInitialPort 1060 specifies which IP port that
should be used when the client and server communicate with the name service. Any unused port
number will work. Some operating systems block lower numbered ports, so choosing a number above
1024 is appropriate.

In the lines shown above, all three programs are running on the same machine. The name
service, server and client may also run on different machines. In this case use -ORBInitialHost

when starting the server and client, and specify the remote machine where the name service is
running. For example, if orbd is started on a machine named onion.cs.uwp.edu and the server
and client are started on bratwurst.cs.uwp.edu, then the commands will be:

On onion:

orbd -ORBInitialPort 1060

On bratwurst:

java CalculatorServer -ORBInitialHost onion.cs.uwp.edu -ORBInitialPort 1060

java CalculatorClient -ORBInitialHost onion.cs.uwp.edu -ORBInitialPort 1060

6.9 Asynchronous Method Invocation

The previous example illustrated a client-server application. The client blocked on each call to the
server, waiting for results. This made sense, as we didn’t want to move on to a new calculation until
we obtained results from the previous on. The same blocking model is used for most client-server
interactions. A web browser waits for a web server to return a page. An ftp client waits for an ftp
server to download a file it requests.

There are nonblocking models for distributed computation, as well. Messages are sent between
agents, but the sender does not wait for a response. The nonblocking models are more event like.
In event based programming our event sources do not block waiting for the handlers to complete.
In nonblocking distributed systems, the message sender does not block waiting for a response from
the message recipient.

6.9.1 CORBA and Asynchronous Messages

CORBA’s IDL declares asynchronous methods as oneway. A oneway method has no return value
and has no out or inout parameters. The call is made to the server and the client continues running,
not waiting for results. When a oneway method is invoked, the server acts much as an event handler
does in a standalone event based application. It receives the message. It runs the method specified
(equivalent to an event handler) and does not return any value to the client. Amazingly, the only
change needed in our coding style is to include the word oneway.

124



6.9.2 Heart Monitor Example

Heart patients in hospitals are frequently hooked up to monitors to keep track of heart rate, blood
pressure, or any of a number of other critical values. The monitors relay signals down to the nursing
station, so a small team of nurses can easily keep track of all the patients on a wing. The software
running at the nurses’ station is the server, receiving messages from the patients, a.k.a. the clients.

Below is a simple idl file for such a system.

1 /∗ Heart . i d l
2 ∗ This f i l e con ta ins an i d l d e s c r i p t i o n o f a hear t ra t e monitor
3 ∗ at a nurses s t a t i o n . I t r e c e i v e s messages from l o c a l monitors in
4 ∗ each pa t i e n t ’ s room .
5 ∗
6 ∗ Written by : S tuar t Hansen
7 ∗
8 ∗/
9 module heartMonitor {

10 interface HeartRateMonitor {
11
12 // This method r e g i s t e r s a l o c a l monitor wi th the s e r v e r
13 oneway void r e g i s t e r ( in s t r i n g name ) ;
14
15 // This method un r e g i s t e r s a l o c a l monitor wi th the s e r v e r
16 oneway void un r e g i s t e r ( in s t r i n g name ) ;
17
18 // A method to r e c e i v e a new hear t ra t e va lue
19 oneway void newRate ( in s t r i n g name , in long r a t e ) ;
20
21 // A method to sound an alarm when the hear t ra t e goes too f a s t or
22 // too s low . I t i s l e f t to the l o c a l c l i e n t to dec ide what the
23 // appropr ia t e va l u e s f o r the alarm are . Typica l v a l u e s in a r e a l
24 // h o s p i t a l s e t t i n g would be 40 and 140.
25 oneway void soundAlarm ( in s t r i n g name , in long r a t e ) ;
26 } ;
27 } ;

Lines Commentary

13 register() is called when a patient is initially hooked into the system. It informs
the nursing station monitor that data will be arriving for this patient.

16 unregister() is called when the patient is taken off the system.

19 newRate() sends the current heart rate to the nursing station monitor.

25 soundAlarm() sends a message that the patient’s heart rate is too high or too low.

The only new idl type in this example is string. An IDL string translates directly to Java’s
String.

The text’s website contains complete code listings for HeartPatient.java and NursingStation.java.
The classes are left intentionally simple, in order to emphasize their CORBA aspects.
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6.10 Peer to Peer Distributed Applications

Our heart monitor example introduced asynchronous messages, but was still a client-server appli-
cation. The patients (the clients) sent messages to the nurses’ station, the server. In peer to peer
applications all objects can both originate and receive messages. One way to think of peer to peer
applications is that the objects will behave as both clients and servers.

6.10.1 CORBA Peer to Peer Applications

If all objects behave completely identically a single idl file describing their methods will suffice.

Frequently, however, even though all objects can both originate and receive messages, the com-
munication remains asymmetric, with different objects sending and receiving different messages.
This type of model requires multiple CORBA interfaces, one for each role in the system.

6.10.2 Chat Example

Consider a typical chat system. Users log onto a chat server. While logged on, they can send
messages to the other users via the server. They can also receive messages from the other users,
again via the server. Two interfaces are needed, one for the clients and one for the server, because
both types of objects are sending and receiving messages.

chat.idl

1 /∗ chat . i d l
2 Written by : S tuar t Hansen
3
4 This f i l e con ta ins the i d l code f o r a CORBA chat a p p l i c a t i o n .
5 ∗/
6 module chatpkg {
7
8 // The Message s t r u c t con ta ins a l l in format ion f o r pass ing
9 // messages to the s e r v e r and from the s e r v e r to the c l i e n t s .

10 s t r u c t Message {
11 s t r i n g sender ;
12 s t r i n g messageText ;
13 } ;
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14
15 // A ChatCl ient sends and r e c e i v e s messages on ly wi th the s e r v e r .
16 // Other c l i e n t communicate wi th t h i s c l i e n t v ia the s e r v e r .
17 interface ChatClient {
18
19 // Receive a message t ha t a c l i e n t i s r e g i s t e r e d wi th the s e r v e r
20 oneway void newCl i en tNot i f i c a t i on ( in s t r i n g cl ientName ) ;
21
22 // Receive a message t ha t a c l i e n t has d e r e g i s t e r e d wi th the s e r v e r
23 oneway void c l i e n tUn r e g i s t e r e dNo t i f i c a t i o n ( in s t r i n g cl ientName ) ;
24
25 // Receive a message from another c l i e n t v ia the s e r v e r
26 oneway void sendMessageToClient ( in Message message ) ;
27
28 // Receive a whispered message from another c l i e n t v ia the s e r v e r
29 oneway void whisperMessageToClient ( in Message message ) ;
30 } ;
31
32 // The ChatServer has methods to r e g i s t e r / un r e g i s t e r ChatCl i en t s
33 // and to r e c e i v e messages from C l i en t s .
34 interface ChatServer {
35
36 // Reg i s t e r a new ChatCl ient
37 // re turn va l u e s
38 // 0 = taken
39 // 1 = ok ∗/
40 long r e g i s t e r ( in s t r i n g cl ientName ) ;
41
42 // Unreg i s t e r a ChatCl ient
43 oneway void un r e g i s t e r ( in s t r i n g cl ientName ) ;
44
45 // Post a message to a l l r e g i s t e r e d c l i e n t s
46 oneway void post ( in Message message ) ;
47
48 // Whisper a message to one o ther c l i e n t
49 oneway void whisper ( in s t r i n g clientName , in Message message ) ;
50 } ;
51 } ;
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Lines Commentary

10–13 Define a struct, which is a new idl entity in this example. A struct is a class
that contains only public data. There are no methods and no private data. Structs
translate to Java classes where all data elements are public. In this case we use
it to define a data structure to hold messages. Messages will be objects of type
Message. They contain both the name of the sender and the text. The Message
class is created when we compile our idl file using idlj:

17–30 Define the chat client’s interface. Note that some of the method names may be a bit
confusing. Recall that the ChatClient methods will be implemented by the clients,
but called by the server. We chose to name them from the server’s perspective. For
example,

oneway void sendMessageToClient (in Message message);

is a method within the client class that the server will call when it wants to send a
message to the client. From the client’s point a name like receiveMessage() may
be a better name.

34–50 Define the chat server’s interface. A chat client sends a message to all other clients
by sending it to the server’s post() method for distribution.

1 package chatpkg ;
2
3 /∗∗
4 ∗ chatpkg /Message . java .
5 ∗ Generated by the IDL−to−Java compi ler ( p o r t a b l e ) , v e r s i on ”3.2”
6 ∗ from chat . i d l
7 ∗ Tuesday , February 3 , 2009 1 :24 :27 PM CST
8 ∗/
9

10 public f ina l class Message implements org . omg .CORBA. por tab l e . IDLEntity
11 {
12 public St r ing sender = null ;
13 public St r ing messageText = null ;
14
15 public Message ( )
16 {
17 } // c to r
18
19 public Message ( S t r ing sender , S t r ing messageText )
20 {
21 sender = sende r ;
22 messageText = messageText ;
23 } // c to r
24 } // c l a s s Message
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Client Connection to the ORB

The code in the chat clients to connect to their ORB and the server is a a combination of what was
previously in the client and server classes. Code from a typical client is shown below.

231 // We run the orb wa i t ing method in a separa t e thread so t ha t we can
232 // cont inue proce s s ing in the main thread
233 public void run ( )
234 {
235 orb . run ( ) ;
236 }
237
238 // use NameService to connect to time s e r v e r
239 private void connectToChatServer ( S t r ing [ ] params )
240 {
241 try {
242 // I n i t i a l i z e the orb
243 orb = ORB. i n i t ( params , null ) ;
244
245 // Connect to the name s e r v i c e
246 org . omg .CORBA. Object corbaObject =
247 orb . r e s o l v e i n i t i a l r e f e r e n c e s ( ”NameService” ) ;
248 nameService = NamingContextExtHelper . narrow ( corbaObject ) ;
249
250 // Look up the chat s e r v e r
251 NameComponent nameComponent =
252 new NameComponent( ”ChatServer ” , ”” ) ;
253 NameComponent path [ ] = { nameComponent } ;
254 corbaObject = nameService . r e s o l v e ( path ) ;
255 chatServer = ChatServerHelper . narrow ( corbaObject ) ;
256
257 // Reg i s t e r t h i s o b j e c t wi th both the name s e r v i c e and
258 // the chat s e r v e r
259 POA rootpoa = POAHelper . narrow (
260 orb . r e s o l v e i n i t i a l r e f e r e n c e s ( ”RootPOA” ) ) ;
261 rootpoa . the POAManager ( ) . a c t i v a t e ( ) ;
262
263 org . omg .CORBA. Object r e f =
264 rootpoa . s e r v a n t t o r e f e r e n c e ( this ) ;
265 ChatClient meIOR = ChatCl ientHelper . narrow ( r e f ) ;
266
267 NameComponent path2 [ ] = nameService . to name ( name ) ;
268 nameService . reb ind ( path2 , meIOR) ;
269
270 chatServer . r e g i s t e r ( name ) ;
271
272 // Use a separa t e thread to s t a r t the orb
273 new Thread ( this ) ;
274 } catch ( Exception e ) {
275 System . out . p r i n t l n ( ”Unable to connect to chat s e r v e r ” ) ;
276 System . out . p r i n t l n ( e ) ;
277 }
278 }
279 }
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Clients need to register with both the name service and the chat server.

Lines Commentary

233–236 Used to create a new thread for the ORB, so that the main thread does not block.
Called when the new thread is started on line 273.

245–255 Resolve the name service and chat server to CORBA objects.

257–270 Carry out the registrations.

273 Start the ORB running in a new thread.

233–236 Clients also need to call orb.run(), as the server did, so they can receive messages.
orb.run() executes in the current thread and blocks, however. Because clients need
this thread to continue their own processing, so for example, they can originate
messages, a separate thread is started.

The complete listing for the chat server is found on the textbook’s web site.

6.11 Conclusion

This chapter introduced you to distributed programming and some of the basic paradigms, e.g.
client–server and peer–to–peer, that are frequently used when building distributed applications.
The distributed infrastructure we used to develop our examples was CORBA. There are certainly
many other infrastructures available. In the next several chapters we will continue our discussion of
distributed event based programming, but using the World Wide Web as the infrastructure.
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