Chapter 4

Event Infrastructure

4.1 Introduction

Hopefully we have convinced you in the first several chapters that event based programming is a
distinct paradigm from algorithmic programming (either procedural or object—oriented). An event
firing has different semantics than a method call. Its unique semantics require additional support
from the underlying system. The support infrastructure may be implemented in hardware or soft-
ware, but must be there.

Languages and libraries that support event based programming include an infrastructure of event
services that makes developing and running event based programs easier. Programmers frequently
write code that use these services without really understanding their details, treating event processing
as a black box. Their code compiles and runs, using the event infrastructure, but the programmer
never really knows how the pieces fit together to get the job done.

Our purpose in this chapter is to open up the black box and look in detail at the various
features that support event processing. The details obviously depend on the language, library or
hardware used. However, there is a common core of services needed in any event based infrastructure.
Understanding the ideas behind the core services helps us gain a deeper understanding of how event
based systems work. This is necessary if we are going to do more complex event based programming,
like designing our own event classes.

Event based programming is distinct from algorithmic programming. Algorithm design deals
with how to represent and process the data necessary to carry out a computation and how to de-
compose the algorithm into simpler, more manageable parts. Algorithm decomposition is often
accomplished through the use of procedures (or subroutines) that carry out sub-tasks of the algo-
rithm. The algorithm is accomplished by carrying out processing steps in the procedures, each of
which contributes to achieving the goals of the algorithm.

How are event based systems different from algorithms? First, an event based system is a system
that has parts that interact with each other and that has behaviors that change over time. The parts
of an event based system are typically heterogeneous, as well as spatially and temporally separated.
The relationships among the parts are dynamic. Moreover, event based systems interact with the
external environment, making their inputs — and therefore their behaviors — unpredictable.

As we have already described in section 1.4.2, event based systems are comprised of loosely
coupled parts that interact with each other via events. In a procedural setting, when algorithm A
calls procedure P, control is passed from A to P, and P maintains control until it returns to A. In
an event based setting, when an event FE is fired in the context of an event source S, processing in
S can continue to take place in parallel with the handling of the event F.

73



. Second o
Event Source First Handler Handlar Mth Handler

Ewvenl Fires

Figure 4.1: This figure shows the critical times during an event’s life, when the event fires, when
event handling begins and when the last handler completes its processing.

Finally, as an event propagates through a system, it may morph or change. ”Low-level” events
morph into ”high-level” events taking on meaning within their current context. For example, a
mouse click at the hardware level may be represented by a bit that is set in a device controller,
but as the click is processed it takes on successively more characteristics such as screen coordinates,
being identified with a process, and finally being regarded as activating a menu item.

As we saw in the previous chapter, event handlers are programmed in much the same way we
program procedures and methods. As we have just described, however, the semantics of events are
quite different than procedure calls. The event processing infrastructure exists to support the event
semantics.

4.2 The Event Life Cycle

Naively, we have described events as being fired and handled almost simultaneously. That is, when
an event such as a mouse click fires, we often perceive no delay between the firing of the event and
the handling of the event. In truth, when an event occurs, a possibly complex sequence of steps is
performed that ultimately ends up with the event being processed. Firing an event includes creating
a data structure or object that encapsulates the critical event data and storing it in a place accessible
to the event dispatching infrastructure. Sometime thereafter, the event handlers begin executing,
and still later, with possible interruptions in-between, the last handler for the event finishes. These
steps are illustrated in Figure 4.1. If many events occur in rapid succession, there may be a noticeable
delay between when an event fires and when handling begins.
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4.2.1 Event Handling Requirements

There is one universal requirement for event based systems:

Sometime after an event fires, the system achieves a state consistent with the behavioral
requirements defined for the event.

For example, in our drawing program in Chapter 2, we pressed and dragged the mouse and we
expected a line to be drawn. If the line wasn’t drawn, the system wasn’t functioning correctly.
Behavioral requirements tell us how a system is supposed to function. Every event has behavioral
requirements, possibly varying based on the control state of the system.

Note that there is wiggle room in this definition. Achieving ”a state consistent with the behavioral
requirements” is not the same as saying that the handlers for this event executed in a particular
order. Reordering or overlapping event handler execution and possibly combining handlers are both
acceptable, as long as the system achieves a consistent state.

4.2.2 Timing Requirements

In event based systems, the requirements may include deadlines for completing event processing. As
we saw in Chapter 1, event based programming is used to implement many types of systems. To a
certain extent, the type of system guides the requirements. For instance, real-time and embedded
systems frequently have hard deadlines for their event handlers to complete.

e Consider driving down the highway with your cruise control system on. A deer leaps out in
front of you and you slam on the brakes. You want the cruise control system to disengage
within a few milliseconds after touching the brakes, not one second or even a half second later.
There is a very important deadline for handling the braking event that must be met for the
system to work correctly.

e By contrast, when you press the down button to summon an elevator, the button should be
backlit almost instantly, and you expect the elevator to stop at your floor — but if you wait
one or two minutes for the elevator to arrive, it is not likely to matter.

If systems have timing requirements we should recognize those requirements explicitly and design
our systems to guarantee that they are met.

4.2.3 Concurrent Event Handling

The final piece of background we need before getting into the infrastructure details is an under-
standing of concurrency. If two things are happen in overlapping time spans, we say they happen
concurrently. For example, in real-time systems it is common to find multiple dedicated proces-
sors handling events. The events are handled concurrently making it easier to meet the required
deadlines.

Similarly, many modern desktop computers have with multiple cores. You can think of cores
as multiple processors, all physically located on one chip. Software doesn’t automatically use more
than one core. Programmers must design and implement their systems to take advantage of the
additional computing power.

Modern languages like Java use an abstraction called a thread to implement concurrency within
a program. For example, GUIs often use a separate thread for event handling. The thread loops
forever, repeatedly looking for the next event and invoking its handlers. This topic is discussed more
completely in the next chapter.
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4.3 Event Infrastructure Services

There are two core event services that any event infrastructure should supply: registering/unregis-
tering handlers and event dispatching. There are other event services that may be provided, too.
For example, logging events can be a great help in tracking down problems, and support for re-
mote events can help the programmer develop distributed systems. These advanced services are not
covered in this chapter.

4.3.1 Event Registration

As we have seen, an event handler registers its interest in a particular event with the event’s source.
The event source keeps track of the handler until either it is unregistered or the application termi-
nates.

Some event systems use unicast events. Unicast event sources have at most one handler for each
event. For example, The GL Utility Toolkit, (GLUT) which is part of OpenGL uses unicast callback
functions for handlers. In GLUT there is one callback function to handle an application’s mouse
events. Registration of unicast event handlers is simple: The event source contains a reference to
the handler.

Multicast event systems may have multiple handlers for each event. When an event fires each of
the handlers is notified. This may sound confusing, but multicasting is not as unusual or complicated
as it may first seem. For example, consider our double list example from the previous chapter.
There were three handlers registered to receive the data changed events: the list’s view, the average
calculator and the maximum calculator. Each had clearly defined responsibilities. All three were
notified when the event occurred.

Supporting multicasting requires event sources to maintain a list (or other data structure) of
handlers. It also makes event dispatching a bit more complicated.

4.3.2 Event Dispatching

The event dispatcher is responsible for invoking the event handlers when an event fires'. Broadly
speaking, we divide event dispatching approaches into two categories: push and pull.

e In push dispatching, the event source is responsible for activating the dispatcher when an event
occurs. We say that the event source pushes the event to the dispatcher. The dispatcher is
then responsible for invoking the handlers. Note that it is possible to have the event source
call the event handlers directly. In this case the source is also the dispatcher.

e In pull dispatching, the dispatcher periodically queries or polls the event sources for events.
When it finds one, it calls the relevant handlers.

The difference between push and pull dispatching is really one of active responsibility. In a pull
system, the dispatcher is responsible for detecting that an event has occurred, typically by polling
the event source. In a push system, the event source activates the dispatcher or enqueues the event
to be handled later. A few examples may help clarify the differences.

n some sense the event dispatcher is itself an event handler. It is code that executes as a result of an event
occurring. For purposes of our discussion, however, we distinguish between code that is supplied by the infrastructure,
the dispatcher, and code that is application specific, the handlers.
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Push and Pull Examples

Suppose that you work for XYZ company as a sales representative. Your objective is to take orders
from customers and to process these orders. In this example, receiving an order from a customer is
the particular event we are interested in.

As a sales representative, you might simply sit at your desk waiting for customers to call you
to place orders. You register your willingness to accept orders by giving your customers your office
phone number. This is an example of push dispatching, since the customer (the event source) is
calling you (and thereby activating you, the event dispatcher) to process the order (handle the
event). You can sleep at your desk until your phone rings.

On the other hand, you might have a set of customers that you visit periodically on a sales route.
As you visit each customer, you ask if they have any orders to place (event polling), and you process
any orders that they may have. It may well be that a particular customer has no orders to place
during your visit, in which case you will simply return on your next visit to check again.

It’s possible, of course, for XYZ company to combine these two approaches — the company may
well want to do so to maximize their opportunities to receive orders by phone as well as to pay
personal attention to their best customers. However, in event based computing systems it is rare to
have events dispatched with both push and pull approaches.

Systems Using Pull Dispatching

Operating systems are responsible for interacting with peripheral devices such as a mouse, key-
board, or disk drive. For example, when you click a mouse button, the hardware device controller
for the mouse (typically a chip on a computer motherboard, but not part of the main processor) may
register the fact that the button has been clicked by setting a bit in an internal device controller
register. The operating system can periodically check the device bit to see if it is set, and if so, the
operating system can treat it as a mouse click event. The device controller will normally reset the
bit after it has been read, so that the device can register multiple mouse click events.

Both the X11 Window System and Microsoft Windows generate myriad events such as
mouse clicks (at a higher level of abstraction than described above) and window expose events. In
an application, these events are typically processed in an event loop that might look something like
this (WARNING: C code alert):
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/+ Xlib event loop */
while (1) {
XNextEvent (display , &report);
switch (report.type) {
case Expose:

/+ handle an Exzpose event ... x/
break;
case ConfigureNotify:
/* handle a ConfigureNotify event ... %/
break;
case ButtonPress:
/+ handle a ButtonPress event ... x/
break;
default:
break;

} /x end switch x/
} /x end while x/
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The loop repeatedly requests the next X11 event and, based on the event type, handles the event
appropriately. The event loop also elucidates why we use the term dispatcher. It receives events of
many different types and, based on the type of an event, dispatches each to the appropriate handler.

The graphics packages OpenGL and GLUT similarly use event loops to handle windowing events
[Angel, 2008, Shreiner et al., 2007]. After registering various event handlers, the GLUT event loop
glutMainLoop () is called, which serves the same purpose as the X1ib event loop given above.

Systems Using Push Dispatching

e In our example using pull dispatching, we described how an operating system could poll a
mouse device controller bit to determine when a mouse button has been pressed. Most high-
performance operating systems do not use polling, however, because of the overhead associated
with it. Instead, high-performance systems (including most consumer-oriented workstations
and laptops) use interrupt processing to handle such events.

An interrupt-driven device has the capability of notifying the computer processor that an event
(such as a mouse press) has occurred. When an interrupt occurs, the processor temporarily
suspends the current program and identifies what device caused the interrupt by probing
external bus lines. The processor then looks up the address of the device interrupt service
routine (found at a fixed location in memory based on the device identification) and executes
the code found at that address. When the interrupt service routine has finished, the processor
resumes the suspended program. In this case, the interrupt service route plays the role of the
event handler.

Notice that for interrupts to work, the address of the interrupt service routine must be installed
at the proper location in memory corresponding to the device. This is how the handler gets
registered with the event source.

e Java and Microsoft .NET both use push dispatching. You have already seen examples in
Chapter 2 that illustrate how handlers are registered with event sources in Java.

The Event Queue

In push dispatching, the event dispatcher may activate an event handler by calling it directly. If
the handler does not return quickly enough, a second event may arrive at the dispatcher while
the first event is still being handled. Two potentially bad things could happen in this case: ei-
ther the dispatcher could try to call the event handler again — with possibly unpredictable results
[Stallings, 2008, Tanenbaum, 2007], or the dispatcher could discard the second event — again with
unpredictable results.

A good way to resolve this situation is to store the second event until the first one completes
its processing. What if multiple events occur while the first is being handled? Each of the events
should be stored until processed. In many systems, a dedicated event queue exists to handle this
situation. The event queue is a data structure holding events waiting to be handled. When the
event dispatcher finishes processing one event it gets the next event from the queue.

An event queue must have a large enough capacity to store pending events without the likelihood
of running out of queue space. If the event handler takes too much time to finish, events can pile up
in the queue so that the queue fills to capacity. In this case, subsequent events may be discarded,
or the system may crash — neither of which is desirable. Good event based system design will have
handlers that return quickly and event queues that are sufficiently large to handle pending events.
Obviously ,such designs must take into account processor and device speed and must carefully craft
the handlers to optimize their performance.
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As mentioned above, it is possible for each event source to function as its own event dispatcher;
having its own event queue, but this would be a waste of system resources. Each event queue would
need to have a capacity large enough to accommodate the worst case number of pending events.
Instead, most systems have a single event dispatcher with a single event queue that holds all pending
events. Each event source is responsible for enqueuing (pushing) its events. The dispatcher, running
in a separate system thread, dequeues the events and activates their respective handlers.

Event Ordering

Events are generally put on the event queue in the time sequence order in which they were fired, so
that if event A occurs before event B, event A will be put on the event queue and handled before
event B. This behavior is called event ordering. Observe that event ordering is another reason to
have a single event queue rather than one for each event source: having multiple queues would mean
that event ordering might be preserved by each queue, but there would be no guarantee that event
ordering would be preserved between queues.

Even with multiple queues, event ordering can be preserved if the queued events have timestamps
that record the time at which they were fired. The dispatching mechanism would then be expected
to handle events in the proper order based on their timestamps. The situation becomes more
complicated in a distributed system: one in which the event sources are on different hardware
platforms and perhaps are physically distant from one another. In this case, timestamps would
be necessary to ensure that event ordering was preserved in the presence of network delays. But
this also requires that all the entities in a distributed system would need to share exactly the same
system time — a problem in its own right [Lamport, 1978].

Event Coalescing

An event dispatcher may also implement event coalescing. Coalescing events is the process of com-
bining multiple events into one. Sometimes nearly identical events occur such that handling the
second event separately would leave the system in the same state as having the handler called only
once. Also, duplicate events can occur in rapid succession because of physical phenomena. Events
waiting in the queue can be examined, and if there are events that can be safely coalesced, the
system does so.

A practical example of event coalescing is an elevator interface. A hotel guest requests elevator
service at a particular floor by pressing the down button. If more than one guest is waiting before
the elevator arrives, or if a guest grows impatient, the button may be pressed multiple times, but
there is no need for a downward traveling elevator to service the floor more than once. The button
presses are coalesced into a single event.

Another example is window repainting. Some graphics systems use events to signal that a display
window (or region) needs repainting. If a program tells the system repeatedly that a window needs
repainting, there is no need to repaint more than once, as after one repainting, the window will be
up-to-date?.

A final example is keyboard debouncing. A human operating a keyboard or keypad is able to
press keys at a maximum rate of less than 20 per second [Norris McWhirter, 1985], giving a mini-
mum 50ms delay between key presses. Sometimes keyboard devices, because of physical or electrical
properties, may record two key presses within a short time frame (lms to 2ms) that cannot pos-
sibly be the result of user interaction with the device. Such a phenomenon is called keybounce
[Hyde, 2003]. To counteract keybounce, two key press events from the same human-operated de-
vice should be coalesced into one if they occur within a few milliseconds of each other (based on

2In modern versions of Java, repaint coalescing is handled by the RepaintManager, not by the event dispatcher.
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their timestamps, for example). The failure to do so can have serious unintended consequences
[Food and Drug Adminstration, 2006]3.

4.3.3 Hybrid Dispatching

The pull-push differentiation provides a nice conceptual model and does a good job describing many
dispatching systems. More complex models may be required when three or more active agents are
involved.

In distributed event systems, the source, the event dispatcher, and the handler(s) may exist on
separate computers. The source may push an event onto the dispatcher’s queue, or the dispatcher
may poll the source. Similarly, the dispatcher may push an event to the handlers, or handlers
may poll the dispatcher’s queue to see if there are any events. We will discuss these issues more
completely in a later chapter.

Publish-subscribe systems have a similar three-tier structure [Muhl et al., 1998]. Publishers de-
liver (push) content to a repository agent. Subscribers either register their interest in published
content with the repository agent which then delivers (push) the content to the subscribers, or the
subscribers scan the repository (pull) for content that they want to receive.

4.4 Java’s Support for Events

To illustrate the practical issues of implementing an event infrastructure, we look at how it is done
in Java.

4.4.1 Handler Registration

Multicast events require the event source to maintain a list of handlers. Java Swing components
can multicast their events, so all Swing components, e.g. JButtons, JTextfields, JPanels, etc.,
maintain a list of listeners. All these components inherit (directly or indirectly) from JComponent,
so it makes sense to declare the list there and use inheritance to obtain access. JComponent contains
the declaration:

protected EventListenerList listenerList = new EventListenerList ();

listenerList is the name of the list. The EventListenerList class is a wrapper around an
array of Objects. This give the Java virtual machine fast access to all the listeners.

To add handlers to the list, we invoke an add***Listener () method. For example, JButton in-
herits its addActionListener () method from its parent class, AbstractButton. The addActionListener ()
code is:

public void addActionListener (ActionListener listen) {
2 listenerList .add(ActionListener.class, listen );
}

Note that on line 2, listenerList’s add() method takes two parameters. This requires a bit
of explanation. As you should recall from Chapter 2, Swing components can fire all sorts of events,
e.g. ActionEvents, MouseEvents, MouseMotionEvents, KeyEvents, etc. The listenerList is used
for all of these, not just ActionEvents. When an event fires, the component needs to search the
list for just the appropriate listeners. The code above adds both the class (ActionListener.class)
and the handler (1isten), to speed up searching the list. An argument can be made that multiple

3Note that keybounces can also be caused by the user and can be a serious impediment to typing for individuals
suffering from tremors [Trewin and Pain, 1998].
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lists of handlers, one for each type of event, should be maintained. While this would alleviate the
need for searching the list, there would be significant overhead within each component, much of it
never used.

4.4.2 JCL’s Event Classes

Java’s class libraries come with hundreds of event classes. The classes form a subtree within Java’s
class hierarchy: see Figure 4.2. At the root of the subtree is EventObject. EventObject is a very
simple class. Since all Java events contain references to their source, there is a protected instance
variable named source, as well as a public getSource () method.

The event tree’s complexity is derived in part from Java evolving over time. Initially, Java just
included the Abstract Windows Toolkit (AWT) for GUI development. AWTEvent is a direct subclass
of EventObject. All events that work with the AWT GUI classes inherit from AWTEvent. When
Swing was added to Java, newer Swing event classes were added into the hierarchy. Many were
added as subclasses to AWTEvent. To make matters a bit more confusing, other Swing event classes
inherit directly from EventObject.

AWT Event Classes

All our Java GUI programs used events that inherited from Java’s AWTEvent class.

AWTEvents augment EventObject’s data with an integer event ID that is used to speed searching
the listenerList for events of a particular type, as well as numerous static constants and specialized
fields.

There are many subclasses to AWTEvent. These classes store the information needed to describe
the specific type of event. The instance methods are primarily “getters” for the values. Because
events may be processed by multiple handlers, it is a bad idea to change event attributes during
processing. Therefore, most event objects are immutable. They do not include “setters” that would
allow us to change attributes.

Take, for example, MouseEvent. MouseEvents occur when a button is pressed, released, or clicked;
when a component was entered or exited; or when the mouse wheel was moved. The MouseEvent
class implements the following methods:

e getButton() which returns an integer telling which, if any, button was pressed.

e getX() which returns the X location (in the source’s coordinate system) where the event
occurred.

e getY() which returns the Y location (in the source’s coordinate system) where the event
occurred.

e Several other getters used in various situations.

4.4.3 Java Event Processing

The steps Java takes to process an event depends on the event’s location in the class hierarchy.

Dispatching AWTEvents

Java’s virtual machine uses a separate thread, known as the event-dispatching thread, to process
AWTEvents. In GUI programs the thread is typically started when setVisible (true) is called, but
the thread may also be started in a number of other ways. All AWTEvents are processed by this
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Figure 4.2: Overview of the Java event class hierarchy.

thread. The event-dispatching thread handles events in a first-fired first handled order, see Figure
4.3.

Thread Safe Components

As discussed earlier, if a handler takes too much time, the GUI will appear unresponsive and the
programmer should consider using a separate thread for that particular handler.

By contrast, some handler code may be required to execute only in the event-dispatching thread,
such as handlers that access GUI components. For example, a textfield may have its text reset by a
handler, or a component may have its background color changed. These types of activities need to
be done within the event-dispatching thread, as Java’s Swing classes were designed using the single
thread rule. Simply stated, once a Swing component is visible, only the event-dispatching thread
should access it. A few of a Swing component’s methods are considered thread safe, like adding and
removing listeners and repaint (), and are exempt from the rule. All other component method calls
should follow the single thread rule.

This leaves us with a bit of an awkward situation: If you have a long running handler, it should
execute in its own thread, but if it needs to access its source component, it should run in the
event-dispatching thread. Java provides a work around. The programmer can specify that code be
executed in the event-dispatching thread using the SwingUtilities class methods invokeLater ()
and invokeAndWait ().

Processing AWT Events

When an AWTEvent fires, the source creates an event object and enqueues it in the system event
queue. The event queue is an instance of EventQueue and exists as an object in the Java virtual
machine. It is possible to obtain a reference to the queue by calling the default Toolkit object’s
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Figure 4.3: Java’s AWT event model requires that events are handled sequentially, in the order they
are fired. Thus, Fvent A’s handling completes before Fvent B’s handling begins.

getSystemEventQueue () method. The reference is obviously necessary if we want to explicitly place
events into the queue. It is also possible to replace the default event queue with one of your own
devising using the event queue’s push() method. This is useful if you want to instrument the event
queue to log the events as they take place, i.e. for debugging or testing purposes, or if you want to
change the semantics of the event queue, such as implementing a priority hierarchy of events for a
particular application.

The event-dispatching thread is responsible for processing AWTEvents after they arrive in the
queue. The processing includes:

1. Get the next event from the queue by calling the queue’s getNextEvent () method.

2. Pass the event along as an argument to the queue’s dispatchEvent () method. dispatchEvent ()
behaves as follows:

(a) If the event implements the ActiveEvent interface, it calls the event’s dispatch()
method. Java uses the ActiveEvent interface for events that know how to process them-
selves. As we will see in the last section of the chapter, ActiveEvents are a good way to
develop our own event classes.

(b) Otherwise, if the event source is a Component, it calls the Component’s dispatchEvent ()
method, again passing along the event as a parameter. Note that Swing components
inherit from JComponent which in turn inherits from AWT’s Component, so this is the
path followed when processing most GUI events. Component’s dispatchEvent() runs
through a variety of cases, handling both low-level and high-level events.
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Low-Level and High-Level Events

Low-level events include mouse events, keyboard events and windowing events, like resiz-
ing the window. These events are created at the operating system level and passed into
our application for handling.

By contrast, high-level events are those that aren’t tied to any particular device. For
example, ActionEvents are high level, as they may be fired by a mouse click, or a key
press, choosing a menu item. You may think of a high-level event as more loosely coupled
to hardware and more tightly coupled to the application than low-level events.

Some low-level and high-level event types are paired. For example, clicking the left mouse
button may be both a MouseEvent (a low-level event) and an ActionEvent (a high-level
event). In Java, if both a high-level handler and a low-level handler are registered for an
event, the low-level handler is ignored.

Since there is a small fixed number of low-level event types, dispatchEvent () handles
them directly.

For high-level events, the source’s dispatchEvent () calls its processEvent () method,
again passing along the event object. processEvent () checks if any event handlers have
been registered for this type of event. If so, it calls each handler in turn.

Method Calls vs. Events Revisited

For many events, processEvent () could have been called directly by the source when
the event fired, but wasn’t. Instead, the event is placed in the event queue and the event
dispatching thread ends up invoking processEvent(). We gain two things by having
processEvent () called via this more indirect route. First, the processing is now done
asynchronously in the event-dispatching thread, freeing up the GUI thread for other work;
and second, events are processed sequentially, in the order they are fired. Both of these
provide further decoupling between the event source and its handlers.

We also note that there is only one processEvent () method in any component, even if
the component fires many different types of events. It is up to processEvent () to sort out
what type of event has fired and process it appropriately. Component’s processEvent ()
may be overridden, but one should be VERY careful doing so, to guarantee that all events
are processed appropriately.

(¢) Otherwise, handle AWT menu events. Note that Swing does not share these menu classes.

(d) Otherwise, ignore the event.

3. Repeat the process for the next event.

Processing Beans-Like Events

The event processing discussed in the previous section works well. It was introduced in Java Version
1.1 and has changed little since. There are a couple of drawbacks to this approach, however.

First, developing test harnesses for the events is difficult. A test harness is a collection of code
that tests the various parts of our system. Testing should not be done haphazardly, but should be
repeatable. A test harness should be able to automatically reproduce the same sequence of events
each time the test is run. Unfortunately, with a few exceptions, it is not possible to explicitly fire
AWTEvents from within code. The firing of events — creating and enqueuing of the event objects —
is done by the event sources, but the sources do not contain public methods that allow the tester to
recreate the process. For example, there is no fireMouseClickedEvent () method available. The
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easiest way to test the code is to physically click the mouse. This problem was partially addressed
by the introduction of the Robot class in Java 1.3. The Robot class was specifically designed to
generate low-level events and pass them on to the application for testing purposes.

A second problem is that it takes detailed knowledge of the event queue and the AWTEvent
class to create new AWTEvent subclasses. For example, developing new event sources requires the
programmer to obtain a reference to the event queue and add events to it. She must also provide
processing methods that handle all event types that the new sources may fire.

Event classes that inherit directly from EventObject avoid these problems. They are are coupled
with event sources that process the events directly, avoiding the need for the event queue. This is
the approach taken by Java Beans, Java’s component architecture [Englander, 1997]. Each event
source contains firex**Event () for each type of event it may fire. For example, JMenus work with
MenuEvents. MenuEvents include such things as selecting a menu, and canceling a menu*. The
MenuEvent class inherits from EventObject, so the JMenu class contains the following methods:

e fireMenuSelected()
e fireMenuDeselected(), and

e fireMenuCancelled()

Each of these methods creates an immutable MenuEvent object, and passes that object to each
of the registered MenuListeners. When processing the list of listeners, the list must be cloned, so
that if a handler adds or removes listeners, it will not affect which handlers are called for this event,
only future events.

Non-AWTEvents are handled within the thread where they originate. This means that cascading
events (events firing other events) are processed in a way analogous to procedure calls. If an event
handler fires a second event, the second event is processed to completion before the thread of
execution returns control to the original handler, see Figure 4.4.

4.5 Programmer Defined AWT Events

One way to get a better grasp on all the ideas in this chapter is to look at an example. In this
section we will develop an example using the AWTEvent classes. In the next section we will contrast
this implementation with a second one developed using a more beans like approach.

Only code snippets are presented here, but the entire listing is available on the text’s web site.

Patients in a hospital may be hooked up to numerous different types of monitors. The
output from these monitors is displayed at the nursing station at the end of the hall. This
allows one or two nurses to care for an entire wing of patients. If everything remains
within normal ranges, a display shows the monitor’s values. If some value exceeds a
threshold, warnings are generated, alerting the nurses that a patient needs attention.

As the heart pumps, a patient’s blood pressure goes up and down with each beat. The
higher pressure is known as the systolic pressure. The lower pressure is the diastolic
pressure. Normal values are 120 and 80 millimeters of mercury, respectively. In this
example, we will design a system that will sound a warning if the systolic pressure exceeds
140 or goes below 90.

Figures 4.5 and 4.6 show the simulated patient GUI and monitor windows, respectively.

4Note that selecting menu items fires ActionEvents, not MenuEvents.

85



Event Source A's Handlar B's Handler

Event A Fires

[ I |

| | |

| | |

| | |
IR :

Event B Fires

I pL

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Figure 4.4: Java events that do not inherit from AWTEvent are handled in a depth first fashion, much
like procedure calls.
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Figure 4.5: The GUI interface for a simulated patient. The patient’s blood pressure values are
changed by moving the sliders.

There are really three different, but closely related events being used in this example. Any change
to the systolic or diastolic pressure will fire an event that updates the display at the nurse’s station.
If the systolic pressure goes too high or too low, a warning event (different than an ordinary systolic
event) is fired to alert the nurses that a patient needs attention. We could define three different
event classes: a SystolicEvent, a DiastolicEvent, and a WarningEvent. Very often, however, a
handler interested in one of these events will be interested in multiple of them, so it make sense to
define only one type of event, a BloodPressureEvent

4.5.1 New Event Classes and Interfaces

Central to this example is the need for a new type of event, a BloodPressureEvent. As we saw
illustrated in Chapter 2, there are really a collection of classes and interfaces needed for each type
of event. These include:

e The BloodPressureListener interface which defines the methods the event handlers must
implement. These include methods for each sub-type of event. We will need methods de-
clared to handle: changes to the systolic pressure, changes to the diastolic pressure, and
warning events — where the systolic pressure goes out of range. We do not include the actual
event handlers here, since application programmers will define the event handlers, specifying
application-specific actions to take when a BloodPressureEvent fires.

e The BloodPressureEvent class which encapsulates all the critical data about the event. A
BloodPressureEvent must contain, the event source, the changed value, and possibly flag
telling whether the event is for the systolic or diastolic pressure, or a warning.

e The Patient, the event source, which fires the events.

4.5.2 The BloodPressureListener Interface

The BloodPressurelListener interface specifies the methods that each handler must implement.
We have three very closely related types of events that are being handled: changes to the systolic
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Figure 4.6: The blood pressure monitoring display at the nurse’s station. When a warning occurs,
a message box pops up, as well.

pressure, changes to the diastolic pressure, and warnings. Because there are three closely related
types of events, the interface declares three methods: systolicChange (), diastolicChange(), and
warning (). BloodPressureListener is given in its entirety below.

0~ O UL W N -

Nej

10
11
12
13
14
15
16

Vir

x This interface defines the methods that must be provided by

* all objects receiving BloodPressure events.

*

% @author Stuart Hansen

*/

public interface BloodPressureListener extends EventListener {
// receives the event if the upper value (systolic) changes
public void systolicChange (BloodPressureEvent e);
// receives the event if the lower wvalue (diastolic) changes
public void diastolicChange (BloodPressureEvent e);
// receives the event if the systolic pressure goes extreme
public void warning(BloodPressureEvent e);

}

4.5.3 The BloodPressureEvent class

Each of the methods in the listener interface takes a BloodPressureEvent as a parameter. A
BloodPressureEvent object contains the following information:

e the event source, in this case the patient.

e AWTEvents include an integer event type. We will use this type field to keep track of whether
we have a systolic, diastolic or warning event.

These first two variables are inherited from AWTEvent and their values are set in the call
to super ().

e the new value.
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Generally speaking, AWTEvent objects are passive. They contain information used by handlers,
but don’t contain much active code. However, events are queued in the system event queue. To
process the event, the system needs to go back to the source which contains the handlers. The easiest
way to do this is to have the event class implement the ActiveEvent interface, which includes only
one method, dispatch(). As discussed in the previous section, the EventQueue’s dispatchEvent ()
method checks to see if an event is an ActiveEvent event. If so, it calls the event’s dispatch()
method. In our BloodPressureEvent class, we will use the event’s dispatch() method to call back
to the Patient’s handleBPEvent () method.

1 import java.awt.x;

2

3 Jxx

4 «x This class encapsulates all the information for
5 * when the blood pressure changes

6 *

7 % @author Stuart Hansen

8 x/

9

10 public class BloodPressureEvent extends AWTEvent implements ActiveEvent {
11 // We use these constants to sort out what type of Blood Pressure
12 // event occurred

13 public static final int SYSTOLIC_EVENT = 0;

14 public static final int DIASTOLIC_EVENT = 1;

15 public static final int WARNINGEVENT = 2;

16

17 private int value; // the new wvalue

18

19 // This is the only constructor.

20 public BloodPressureEvent (Object source, int type, int newValue) {
21 super (source , type);

22 this.value = newValue;

23 }

24

25 // returns the wvalue

26 public int getValue() {

27 return value;

28 }

29

30 // Handle the event by dispatching it to the source.

31 public void dispatch () {

32 BloodPressureEvent event = (BloodPressureEvent) this;
33 Patient pat = (Patient)getSource ();

34 pat.handleBPEvent (event );

35

36 }

The dispatch() method is short enough to be very easy to read. It first finds the patient that
is the source of this event. It then calls the patient’s handl1eBPEvent () method.

The need for dispatch() and handleBPEvent() may seem confusing. Conceptually it isn’t
too hard to explain, however. Java’s event infrastructure knows how to handle all the Java de-
fined event types. ActionEvents, mouse clicks and the like are understood by the EventQueue’s
dispatchEvent () method. When dispatchEvent () comes to a BloodPressureEvent it doesn’t
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know what to do with it, however. Making our events ActiveEvents solves the problem.

4.5.4 The Patient class

The Patient class is our event source. The patient is a fairly typical class that stores data about
the patient. In addition, because it is an event source, it has methods to add and remove listeners,
mechanisms to fire events, and methods to help process events.

We declare and instantiate a vector of listeners to hold our handlers:

29 private Vector<BloodPressureListener> bpListeners =
30 new Vector<BloodPressureListener >();

We declare two short methods to add and remove handlers from the vector:

60 // add a blood pressure listener to this patient

61  public void addBloodPressureListener (BloodPressureListener bpListener) {
62 bpListeners.add(bpListener );

63}

64

65 // remove a blood pressure listener from this patient

66 public void removeBloodPressureListener (BloodPressureListener bpListener) {
67 bpListeners.remove(bpListener);

68 }

Events are fired when values are blood pressure values are changes. setDiastolic() calls
fireBPEvent () which enqueues the event in the system event queue.

97 // set the current diastolic blood pressure

98 public void setDiastolic (int diastolic) {

99 int olddiastolic = this.diastolic;

100 this.diastolic = diastolic;

101 if (olddiastolic != diastolic) {

102 fireBPEvent (new BloodPressureEvent (

103 this

104 BloodPressureEvent . DIASTOLIC_EVENT,
105 diastolic));

106 }

107 }

108

109 // Firing the event requires enqueuing it

110 public void fireBPEvent (BloodPressureEvent e) {

111 Toolkit kit = java.awt.Toolkit.getDefaultToolkit ();
112 EventQueue queue = kit.getSystemEventQueue ();

113 queue . postEvent (e);

114 }

BloodPressureEvent’s dispatch() method calls the Patient’s handleBPEvent () method, so
this also needs to be defined. Since this method handles all types of blood pressure events, we use
a switch statement to distinguish them.

90




116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

// Handle the blood pressure event when it comes out of the queue
public void handleBPEvent (BloodPressureEvent e) {
// clone the wvector so registrations don’t affect this event instance
Vector<BloodPressureListener> temp =
(Vector<BloodPressureListener >) bpListeners.clone ();

// Walk through the wvector firing events to each listener
Iterator <BloodPressureListener> bpllterator = temp.iterator ();
while (bpllterator.hasNext()) {
// The switch is needed to sort through the three types of
// blood pressure events
BloodPressureListener bpl = bpllterator.next ();
switch (e.getID()) {
case BloodPressureEvent .DIASTOLIC_EVENT:
bpl.diastolicChange (e);
break;
case BloodPressureEvent .SYSTOLIC_EVENT:
bpl.systolicChange (e);
break;
case BloodPressureEvent .WARNING EVENT:
bpl.warning (e );

4.6 The Beans-Like Implementation

The same blood pressure example can be written using beans-like events that avoid the AWT event
queue. This is a worthwhile exercise, if for no other reason to gain insight into the the way the two
systems work.

The main difference is that the event source now takes responsibility for processing events rather

than relying on the system’s event queue.

The BloodPressurelListener interface remains unchanged from the previous example.

4.6.1 Revamped Blood Pressure Events

The BloodPressureEvent class is simpler than in the previous section.

e We no longer need the event type field to distinguish which type of event we are processing.
Since the patient will be calling the handlers directly, and the patient already knows the event
type, the information is redundant.

e The dispatch() method has disappeared. The dispatch() method provided a route back
from the event queue to the source. Since we are no longer using the event queue, the method
is not needed.
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1 import java.util .x;
2
3 Jxx
4 «x This class encapsulates all the information for
5 x when the blood pressure changes
6 *
7 % @author Stuart Hansen
8 x/
9
10 public class BloodPressureEvent extends EventObject {
11 private int value; // the new wvalue
12
13 // This is the only constructor.
14 public BloodPressureEvent (Object source, int newValue) {
15 super (source );
16 this.value = newValue;
17 }
18
19 // returns the value
20 public int getValue() {
21 return value;
22 }
23 }
4.6.2 The Revamped Patient Class
In this implementation, the Patient class takes full responsibility for invoking the event handlers.
The Patient class includes methods to fire each of the different types of blood pressure events. The
fire methods are called from within the Patient’s setter methods. Each setter checks to see if an
event has occurred, and if so, it calls the appropriate fire***Event (). Below is setDiastolic().
setSystolic() is very similar, but may fire either warning or systolic change events.
89 // set the current diastolic blood pressure
90 public void setDiastolic (int diastolic) {
91 int olddiastolic = this.diastolic;
92 this. diastolic = diastolic;
93 if (olddiastolic != diastolic) {
94 fireDiastolicEvent (new BloodPressureEvent (
95 this
96 diastolic));
97 }
98 }

Note that the code calls fireDiastolicEvent () only if there is a change in the value. This
makes things slightly more efficient, since it avoids events that have no affect.

Below is the fireDiastolicEvent() method. It iterates across the list of listeners calling
diastolicChange () on each.
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143
144

// We call each of the handlers directly
public void fireDiastolicEvent (BloodPressureEvent e) {
// clone the wvector so registrations don’t affect this event instance
Vector<BloodPressureListener> temp =
(Vector<BloodPressureListener >) bpListeners.clone ();

// Walk through the wvector firing events to each listener
Iterator <BloodPressureListener> bpllterator = temp.iterator ();
while (bpllterator.hasNext()) {
BloodPressureListener bpl = bpllterator.next ();
bpl.diastolicChange (e);

}

fireSystolicEvent () and fireWarning() are almost identical. They only vary in their names
and in the listener method called.

4.6.3 Infrastructure or Client Code

The previous two sections have emphasized the differences in two Java based approaches to event
processing. Both were really dealing with event infrastructure issues, however.

It is important to realize that client code is oblivious to these differences. The GUI and the
event handlers are the same in either case. A programmer can use either set of Blood Pressure
Event classes to implement a nurse’s station.

4.7 Summary

As we saw in earlier chapters, it is possible to write event based applications with only a naive un-
derstanding of how events are processed. In this chapter we showed that an in-depth understanding
of the event processing infrastructure is necessary. Making simplifying assumptions about event pro-
cessing is fraught with danger, as minor differences in the processing can yield significant differences
in the results.

We also showed how to use our understanding of the event processing infrastructure to develop
our own event classes.
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