
Chapter 2

Event Based Programming Basics

2.1 Introduction

This chapter introduces you to the fundamentals of event based programming. Obviously, if we
are going to discuss programming, we will have examples, and those examples will be implemented
in some language. We chose Java. Java has a clean event model where each class or interface
plays a particular role and where the various components work together nicely to form an entire
application. Since, Java is (mostly) platform independent, you may work through all our examples
under Windows, or Linux, or on a Mac – on almost any desktop computer.

Graphical User Interfaces (GUIs) are also a good way to introduce the nuts and bolts of event
based programming. GUI components such as menus, check boxes, radio buttons, and text boxes
communicate with an application via events. The purpose of this chapter is not to study GUI
programming in depth. GUI programming deserves a complete textbook, and there are already
many good texts on the topic [Johnson, 2000, Walrath et al., 2004]. Our purpose is to illustrate
various aspects of event based programming. We use GUIs as the domain.

Java includes two packages for GUI development, the Abstract Window Toolkit (AWT) and
Swing. Our examples use Swing. Swing is the newer package and the more popular of the two. By
the time you finish this chapter, you will be familiar with some of the basic Swing classes, including:
JFrame, JButton, JLabel, JTextfield, JScrollPane, JList, and JPanel, as well as the Swing
menu classes. You will also understand the events that Swing components use to interact with the
application. You will not have mastered Swing, however. If you are interested in pursuing Swing
programming more thoroughly, you are encouraged to pick up a good Swing programming text
[Elliott et al., 2002, Deitel and Deitel, 2007, Deitel et al., 2002].

All our examples are relatively short and may be coded using any text editor. However, all source
code examples may also be downloaded from the text’s web site.

2.1.1 Integrated Development Environments

If you intention is to build professional quality GUIs quickly, the authors recommend using an
Integrated Development Environment (IDE). There are several good Java IDEs, NetBeans and
Eclipse, for example, and a variety of plugins that allow programmers to develop Swing programs
using drag and drop techniques. These are not discussed here, as they hide many of the details of
event based programming in which we are interested.

13

Figure 2.1: The object–oriented event processing model

2.2 The Object–Oriented Event Model

The fundamental building blocks of object–oriented programs are classes and objects. Object–
oriented event based programs are no exception. The event source (an object) fires an event which
is processed by the event handlers (other objects). Each handler processes the event by manipulating
application objects. Figure 2.1 shows the relationship among the various pieces.

As we will see in later chapters, designing event sources poses some complex issues. We will avoid
these issues in this chapter by letting the Swing classes serve as the sources. Swing components are
the programmatic representations of the sources for input events such as mouse clicks and keyboard
presses. Of course, a particular physical device (mouse or keyboard) is really the “source” of the
event, and that this low level event propagates upward to the Swing application. We pick up the
event processing when the Swing component realizes that the event has occurred. For more on the
upward propagation of events, see Chapter 5.

The event handlers, which execute when the event fires, are application specific. That is, each
button in each application has handlers designed explicitly for it. Assuming that you have already
implemented the data structures and other application classes with which your GUI will interact,
coding a Swing GUI becomes a three step process:

1. Identify the GUI components to be used and lay out the GUI interface.

2. Code the event handlers that go behind the GUI components1.

3. Register the handlers with the GUI components.

2.2.1 A Simple Example

A simple example can serve to clarify these ideas by putting them into a concrete context.
In this example there is a single button. When the button is clicked, a message box is opened.

The main GUI interface is shown in Figure 2.2.

Figure 2.2: The user interface for ClickMe.java

The resulting message box is shown in Figure 2.3.

1A GUI component such as a button has a visible attribute that appears to a user on the screen, and clicking on
the button activates program code (the handler) that is invisible to the user. We think of the button as hiding the
handler, or that the handler is “behind” the button, away from the view.

14

1 /∗∗ ClickMe . java
2 This i s a very s imple event dr i ven Java program .
3 I t con ta ins a s i n g l e button , t h a t when c l i c k e d pops open a message d i a l o g .
4
5 Written by : S tuar t Hansen
6 Date : September 2008
7 ∗∗/
8
9 import javax . swing . ∗ ;

10 import java . awt . event . ∗ ;
11
12 public class ClickMe extends JFrame {
13 JButton button ; // Our one and only but ton
14
15 public ClickMe () {
16 // The but ton i s our event source
17 button = new JButton (” Cl i ck me”) ;
18
19 // We r e g i s t e r a hand ler wi th the source
20 ActionHandler handler = new ActionHandler () ;
21 button . addAct ionLis tener (handler) ;
22
23 // We add the but ton to the v i ewab l e area o f the window
24 getContentPane () . add (button) ;
25
26 // We s e t a coup le o f window p r op e r t i e s and then open the main window
27 s e t S i z e (100 , 100) ;
28 se tDe fau l tC lo seOperat i on (JFrame .EXIT ON CLOSE) ;
29 s e tV i s i b l e (true) ;
30 }
31 // A very s imple main method
32 public stat ic void main (St r ing args []) {
33 new ClickMe () ;
34 }
35 }
36
37 // The hand ler c l a s s .
38 class ActionHandler implements Act ionL i s t ene r {
39 public void act ionPerformed (ActionEvent e) {
40 JOptionPane . showMessageDialog (null , ”Ouch ! That hurt . ”) ;
41 }
42 }

15

Lines Commentary

9, 10 The javax.swing package includes the Swing classes for windows, buttons,
textboxes, etc. The java.awt.event package is also needed, as it includes many of
the event classes.

12 The class ClickMe inherits from JFrame. JFrame is Swing’s window class. By
inheriting from it, our program gets a main window in which we develop our GUI.

13 The JButton is the only GUI element in our window.

15–30 The ClickMe constructor in which we instantiate our objects, register the handler
with source and set a few properties.

17 This instantiates the button.

20 handler is an ActionHandler object. The handler is responsible to responding to
button clicks. ActionHandler is a separate class, whose source code is at the end
of the file.

21 handler is registered with the button at runtime. Note that this is an example of
polymorphism or dynamic binding, a central theme in event based programming.

24 The button is added to the JFrame. Swing requires that we add the button to the
contentpane of the application rather than directly to the JFrame. This separates
the handling of the GUI components from the other windowing responsibilities, e.g.
closing and resizing.

27 The JFrame is sized to 100x100 pixels.

28 The application should exit when the JFrame closes. If this line is omitted, you may
close the GUI window, but the application will continue to run in the background.

29 The JFrame is set to be visible.

32–34 The main method. As with many GUI and other event driven programs, the main
method’s body shrinks to a single line of code that instantiates the application
object. In our application line 33 constructs a new ClickMe object.

38–42 The ActionHandler class. It contains one method, actionPerformed() which is
invoked when the button is clicked. The method opens a message window.

Figure 2.3: The message box opened by clicking the button.

Many beginning Java programmers do not realize that it is legal, and many times desirable, to
place multiple Java classes within one file, as we done here. The only restriction Java places on us is

16

that at most one class may be public: this must be the class containing the main() method. In our
program we place the ActionHandler class within the ClickMe.java file, because it is only used by
this application.

The ActionHandler class implements the ActionListener interface. Objects implementing this
interface must have a method with the particular signature:

public void actionPerformed (ActionEvent e)

Since our handler is registered with the button (line 21), this actionPerformed method is called
whenever the button is clicked. Our particular actionPerformed method displays a message dialog
box saying ”‘Ouch! That hurt.”’

While this example is very simple, it illustrates many of the basic features of Java event based
systems. It has an event source (the JButton) and an event handler (the ActionHandler). It
registers the handler with the source at runtime. The handler contains a method with a specific
signature (actionPerformed(ActionEvent e)) that is called when the button is clicked. We should
also note that the event object, ActionEvent e, is always passed to the handler, but in our example
e is never used.

2.3 Java Language Features to Support Event Based Pro-

gramming

There are several features of Java that support event based programming. Among them are anony-
mous classes and inner classes. The next several examples show how these features can be used to
make our programs more elegant.

2.3.1 Anonymous Classes

Most Java programming students are familiar with anonymous objects. An anonymous object is
one that is instantiated, but never assigned to a variable. For example, in the ClickMe program
above, the main() method instantiates a ClickMe object, which starts the entire program running,
but that object is never assigned. It remains anonymous.

Anonymous classes are similar. A class is created, but never given a name. Two conditions
should be true before using an anonymous class:

1. There must be only one place in the code where an object of this type is instantiated. We will
define the anonymous class and instantiate objects at this location.

2. The anonymous class should only contain one or at most two short methods that are being
defined or overridden. If the class is longer, the code will be much more readable if defined as
a named class.

Anonymous classes are useful to define event handlers, because handlers generally meet these
conditions. Often an event handler is only referenced when it is instantiated and registered with the
source (condition 1). Similarly, a handler only needs to define the methods expected by the listener
interface. In our above example, this was actionPerformed(). Thus, event handlers make ideal
candidates for anonymous classes.

17

ClickMe using Anonymous Classes

Here is the ClickMe program again, using an anonymous handler.

1 /∗∗ ClickMeAgain . java
2 This program i l l u s t r a t e s the use o f anonymous c l a s s e s f o r hand l e r s
3 Written by : S tuar t Hansen
4 Date : September 2008
5 ∗∗/
6
7 import javax . swing . ∗ ;
8 import java . awt . event . ∗ ;
9

10 public class ClickMeAgain extends JFrame {
11 JButton button ; // Our one and only but ton
12
13 public ClickMeAgain () {
14 // The but ton i s our event source
15 button = new JButton (” Cl i ck me”) ;
16
17 // Reg i s t e r the hand ler
18 button . addAct ionLis tener (new Act ionL i s t ene r () {
19 public void act ionPerformed (ActionEvent e) {
20 JOptionPane . showMessageDialog (null , ” I sa id , \”Don ’ t do that .\” ”) ;
21 } }
22) ;
23
24 // We add the but ton to the v i ewab l e area o f the window
25 getContentPane () . add (button) ;
26
27 // We s e t a coup le o f window p r op e r t i e s and then open the main window
28 s e t S i z e (100 , 100) ;
29 se tDe fau l tC lo seOperat i on (JFrame .EXIT ON CLOSE) ;
30 s e tV i s i b l e (true) ;
31 }
32
33 // Event dr i ven program r e g u l a r l y have s imple main programs
34 public stat ic void main (St r ing args []) {
35 new ClickMeAgain () ;
36 }
37 }

Lines Commentary

18–22 An anonymous instance of an anonymous handler. We construct an
ActionListener followed by a pair of braces, { and }, and we define the han-
dler methods within them. In this program, the only method defined this way
is actionPerformed(). Note that ActionListener is an interface, but because
we define actionPerformed(), we can instantiate it. Anonymous classes can also
be derived from other classes. This is useful if we want to specialize a previously
defined handler by overriding one or two methods.

The remainder of the code is virtually unchanged from the previous example. The only difference
is that the named class, ActionHandler, is gone – replaced by the anonymous class shown above.

18

Figure 2.4: The GUI for the List of Strings program.

2.3.2 Inner Classes

Many modern object–oriented languages, including C++, C# and Java allow a programmer to
define inner classes. These are classes defined inside of another class. Inner classes are useful in
several different situations. If class A takes complete responsibility for all instances of class B, it
is appropriate to define class B as a private inner class, inside of A. This prevents other classes
from attempting to access B directly. For example, linked lists contain nodes for which the list is
completely responsible. Nodes should not be seen outside of the list. They serve no purpose outside
of the list. We can define the Node class a private inner class to the LinkedList class. The linked
list will have complete access to the nodes, but nodes will be completely invisible outside the list.

Inner classes also provide improved scoping. The scope of a variable or method is where it is
visible. In object–oriented languages, instance variables and methods are declared private, public,
or protected. This determines the variable’s visibility. Good software engineering practice tells us
to declare our variables as private so that they are only visible within the class where they are
declared. We then grant access to them via public methods that manipulate them only in controlled
ways.

In modern object–oriented languages, instances of an inner classes have access to all members
of the encapsulating class, including private members. This means that an event handler defined as
an inner class can call private methods and access private data in the encapsulating/outer class, as
needed.

2.3.3 List Example using Inner Classes

This example illustrates inner classes, as well as several additional Swing classes. The objective of
the program is to display a list of strings that the user enters. The GUI is shown in Figure 2.4. The
user types text in the input field following the prompt. When she presses enter, the text is added
to the list.

19

1 import javax . swing . ∗ ;
2 import java . awt . ∗ ;
3 import java . awt . event . ∗ ;
4
5 /∗ ListDemo i l l u s t r a t e s the use o f JLabels , JTextFie lds ,
6 ∗ JScro l lPanes and JL i s t s .
7 ∗
8 ∗ Written by : S tuar t Hansen
9 ∗ September 2008

10 ∗/
11 public class ListDemo extends JFrame {
12 // These e lements form the GUI o f the a p p l i c a t i o n
13 private JLabel enterLabe l ;
14 private JTextFie ld en t e rF i e l d ;
15 private JScro l lPane l i s tPane ;
16 private JL i s t l i s t ;
17
18 // The cons t ruc t o r
19 public ListDemo () {
20 super (” L i s t Demo”) ;
21 enterLabe l = new JLabel () ;
22 en t e rF i e l d = new JTextFie ld () ;
23
24 // The Defau l tL i s tMode l on the next l i n e g i v e s us the
25 // a b i l i t y to add to the l i s t
26 l i s t = new JL i s t (new DefaultListModel ()) ;
27
28 // The l i s t i s added to a JScrol lPane , so t ha t we may
29 // view l i s t s l a r g e r than the d i s p l a y
30 l i s tPane = new JScro l lPane (l i s t) ;
31
32 // se tup the contentPane to use a b s o l u t e coord ina t e s
33 Container contentPane = getContentPane () ;
34 contentPane . setLayout (null) ;
35
36 // i n i t i a l i z e and add the components to the GUI
37 enterLabe l . setText (”Enter some text ”) ;
38 enterLabe l . s e t S i z e (100 , 3 0) ;
39 enterLabe l . s e tLocat i on (20 , 2 0) ;
40 contentPane . add (enterLabe l) ;
41
42 en t e rF i e l d . s e t S i z e (100 , 2 0) ;
43 en t e rF i e l d . s e tLocat i on (120 , 2 5) ;
44 contentPane . add (en t e rF i e l d) ;
45 en t e rF i e l d . addAct ionLis tener (new InputHandler ()) ;
46
47 l i s tPane . s e t S i z e (100 , 200) ;
48 l i s tPane . s e tLocat i on (20 , 6 0) ;
49 contentPane . add (l i s tPane) ;

20

50
51 // Set the windows s i z e and c l o s e opera t ion
52 s e t S i z e (300 , 300) ;
53 se tDe fau l tC lo seOperat i on (JFrame .EXIT ON CLOSE) ;
54
55 // d i s p l a y the a p p l i c a t i o n window
56 s e tV i s i b l e (true) ;
57 }
58
59 // The Act ionLi s t ener f o r the JTextFie ld
60 // The event i f f i r e d when enter i s pres sed
61 // The t e x t i s added to the l i s t
62 private class InputHandler implements Act ionL i s t ene r {
63 public void act ionPerformed (ActionEvent e) {
64 St r ing text = en t e rF i e l d . getText () ;
65 DefaultListModel model = ((DefaultListModel) (l i s t . getModel ())) ;
66 i f (! t ex t . equa l s (””)) {
67 model . addElement (t ext) ;
68 en t e rF i e l d . setText (””) ;
69 }
70 }
71 }
72
73 // a very s imple main program
74 public stat ic void main (St r ing args []) {
75 new ListDemo () ;
76 }
77 }

21

Lines Commentary

13–16 Declare the various Swing components for this example.

13 Declares the JLabel that prompts the user.

14 Declares the JTextField where the user enters the strings.

15–16 The components on lines 15 and 16 work together. JLists are not scrollable, so
when using a JList it is almost always best to wrap it in a JScrollPane before
adding it to the application. Scroll bars will then appear automatically if the list
grows larger than its viewable area.

19–57 Define the application’s constructor.

21–30 Instantiate the various GUI components.

26 Pass an instance of DefaultListModel to the JList’s constructor. It sounds silly,
but DefaultListModel is not the default list model for JLists, so we need to pass
one to the constructor, if we want to use it in place of the real default. In our
application, the main advantage of using the DefaultListModel is that it makes it
easier to add objects to the list.

30 Wrap the JList inside of the JScrollPane as discussed above.

33–34 Set the JFrame’s contentpane and set its layout manager to null. Layout managers
control the location and size of components in a GUI. There are a number of good
layout managers, but any discussion of them is beyond the scope of this chapter.
Instead, by setting the layout manager to null, we tell the application to use the
sizes and locations that we set explicitly in the code.

36–49 Set the sizes, locations and a few other properties of the various GUI components
and add each to the JFrame.

52–56 Set a few JFrame properties and show the application window.

62–71 Define the handler for the JTextField. An ActionEvent is generated when the user
presses enter while the focus is on the field. As in the previous example, this handler
implements the ActionListener interface. Conceptually, the actionPerformed()

method is straightforward. We get the text from enterField, and if it isn’t null

add it to the list. There are a number of details we should note:

• The handler is defined as a private inner class. This means that the class and
instance of the class are not visible beyond the ListDemo class.

• actionPerformed() accesses data and methods in the ListDemo class. It
calls two methods from enterField and one method from list. These are
private data members of ListDemo, but are visible to the handler because it
is an inner class.

• All Swing components, including JList use a model–view–controller (MVC)
architecture. In the next section we discuss MVC in more detail. For now,
note that the data is stored in the model portion of the component. Therefore
the handler must call getModel() before it can add to (or delete from) the
list.

22

2.4 Inheritance

Inheritance is the primary way of reusing existing code while specializing it to the needs of a specific
application. A derived class inherits from a base class. It automatically gets all the data and
methods already defined in the base class. The programmer can then add more data and methods,
and override methods that already exist.

Inheritance can play a major role in developing GUIs and other event base programs. Languages
come with large GUI APIs that contain buttons and sliders and all the types of components that go
into a typical GUI. Each has a standard appearance and user interactions, e.g. a GUI button looks
like a button, and computer users all know that you click it to make things happen. By contrast, a
label displays information to the user and the user doesn’t expect anything to happen if they click
on it.

An easy way to build complex GUIs is to extend existing GUI classes so they appear and behave
the way you need. Let’s consider two examples:

• In our previous Java example, we displayed a list of strings. The list was displayed in the order
the strings were entered. A simple specialization would be to maintain the list in alphabetical
order.

• As another example, consider developing a drawing program. The user will create a picture
by dragging the mouse. The program displays the figure in real time, as it is created.

In both cases, we start with an existing class and extend it for some particular purpose. We will
develop Java implementations of each of these after a bit more discussion.

2.4.1 Model–View–Controller

GUI components are developed using a Model–View–Controller (MVC) approach. MVC is way of
thinking about GUI components and programs that divides their implementation into three parts:

• a model – containing the data,

• a view – visually presenting the data, and

• control – through which other objects and the user interact with the data.

The component wraps the model, view and controller into a single object.
The model, view and controller are tightly coupled, because the component can’t exist without

all three, but the coupling occurs in very specific ways.

• Control updates the model and on occasion may directly tweak the view.

• The view depends on the model for the data to display.

• Control code, at least in Java, frequently does not exist as an independent object, but consists
of the methods and handlers within the component that change the component’s state.

The model, view and controller remain loosely coupled in the sense that each one has distinct
responsibilities and can be modified or replaced without requiring changes to the other two. Model,
view and control each have specific responsibilities, and as long as they live up to their responsibilities
their internal functioning is independent of the other two. For example, in the ListDemo code above,
the JList was assigned a new model, the DefaultListModel, without requiring any changes to the
list’s view or control.

23

Figure 2.5: The sorted list program during a run.

The Sorted List Example

This example is identical to the previous one, except that the elements in the list are maintained
in lexicographic order. In the earlier example we showed how to replace a JList’s model with an
instance of DefaultListModel. In this example we will use a specialized list model of our own
design.

ListModel is a Java interface. Any object that implements the interface could be used as the
model for a JList. Our SortedListModel extends DefaultListModel which, in turn, implements
ListModel. This way we will only need to override methods of interest. The rest we inherit from
DefaultListModel. We choose to only override the addElement() method, modifying the code so
that the list is maintained in sorted order. As noted in the code’s comments, better code would also
override all other methods that can add data to the list, or modify elements already in the list, but
for the sake of brevity this is not done.

24

1 import javax . swing . ∗ ;
2
3 /∗ SortedLis tMode l . java r e p l a c e s the d e f a u l t l i s t model wi th one
4 ∗ t h a t keeps the l i s t i s s o r t ed order .
5 ∗
6 ∗ Written by : S tuar t Hansen
7 ∗ September 2008
8 ∗/
9 public class SortedListModel extends DefaultListModel {

10 // We ove r r i d e addElement in the De fau l tL i s tMode l c l a s s
11 // so t ha t the JL i s t remains so r t ed .
12 // Note t ha t in a more complete app l i c a t i on , add ()
13 // s e t () and setElementAt () shou ld a l s o be overr idden .
14 public void addElement (Object obj) {
15 St r ing s t r = obj . t oS t r i ng () ;
16 int index = ge tS i z e () ;
17 while (index > 0 && ((St r ing) elementAt (index −1)) . compareTo (s t r) >=0) {
18 index−−;
19 }
20 super . add (index , obj) ;
21 }
22 }

Lines Commentary

14–21 The new addElement() method uses a linear search to find the correct lexicographic
location for the element. The while loop starts at the end of the list and moves back-
wards toward the first element, until it finds the correct location or reaches the list’s
beginning. The call to super.add() is to the add method in the DefaultListModel
which inserts the element at that location.

We do not show the remainder of the code for this example, because only one other line is
changed, the line that instantiates the JList. A new SortedListModel() is passed to the JList

constructor instead of the DefaultListModel. Figure 2.5 shows the modified program during a run.

ListModelEvents

The astute reader will notice that our revised code did not change the events that fired or the control
code. Only the model changed. The external events of GUI components control the interaction
between the user and application. Our modified program did not touch this code. We only changed
the model, which modified how the data was stored and indirectly how it was displayed.

How then did the JList know that it needed to update its view when an element was added?
The answer is that it uses internal events. An internal event is one whose source and handler both
reside in the same component. Only the model, view and control of the component need be aware
of these.

In our example, the list model fired a ListDataEvent to the ListModelListeners whenever the
model changed.

Because our new model inherited all the infrastructure to register and fire ListDataEvents from
DefaultListModel. Our new addElement() method fired the event within its call to super.add().
No explicit event firing was needed on our part.

25

The JList’s view listened for the events and updated itself appropriately. This approach also
works well if we have multiple views of the same model, or when changes to the model propagate to
other non–view objects 2.

A Drawing Application

In this section we present another example of events working with MVC, creating a drawing appli-
cation. The user draws in a window by pressing the left button and dragging the mouse within the
window, see Figure 2.6.

The application is built around a specialized JPanel, named DrawPanel. Developing the DrawPanel
provides an excellent example of extending a Swing component with redefined and augmented model,
view and control.

JPanels are containers. A container is a component whose primary role is to hold other com-
ponents. That is, programmers add buttons, textboxes and other components to them, and then
later add the container to a window/frame. Containers don’t have much specialized functionality,
making them an ideal base class for extending when creating a new specialized component.

The more general question of which component a programmer should extend to create a new,
specialized component depends a lot on the programmer’s needs and the language/API being used.
The programmer should try to maximize the amount of code that can be reused. If you want to be
able to click on the component, a button is an obvious choice. If you want to be able to type text
into the component, a textbox is the obvious choice. If you want to define something completely new
and different, then choosing a component with minimal pre–existing functionality, e.g. a JPanel in
Java, makes good sense.

We start by presenting our DrawPanel, then show how it can be used in a complete application.

2It is possible in Java to register other listeners for ListDataEvents. This is illustrated in the List of Doubles
example, later in this chapter.

26

1 import javax . swing . ∗ ;
2 import javax . swing . p l a f . ∗ ;
3 import java . awt . ∗ ;
4 import java . awt . event . ∗ ;
5 import java . u t i l . ∗ ;
6
7 /∗∗
8 ∗ DrawPanel implements a JPanel t h a t can be drawn on us ing
9 ∗ the mouse

10 ∗
11 ∗ @author S tuar t Hansen
12 ∗ @version September 2008
13 ∗/
14
15 // We s p e c i a l i z e the JPanel to conta in a drawing .
16 public class DrawPanel extends JPanel {
17 // The model used f o r the JPanel i s a l i s t o f curves .
18 ArrayList<Curve> l i s tO fCurve s ;
19
20 // Two add i t i o n a l s t a t e v a r i a b l e s to a id us in c r ea t i n g the drawing
21 Curve currentCurve ; // the curren t curve be ing drawn
22 Color cur rentCo lor ; // the curren t drawing co l o r
23
24 public DrawPanel () {
25 super () ;
26
27 // I n i t i a l i z e the model
28 r e s e t () ;
29
30 // r ep l a c e the view
31 setUI (new DrawPanelUI ()) ;
32
33 // add s p e c i a l i z e d con t r o l
34 addMouseListener (new MouseHandler ()) ;
35 addMouseMotionListener (new MouseMotionHandler ()) ;
36 }
37
38 // A s e t t e r f o r the co l o r
39 public void s e tCo lo r (Color c o l) {
40 currentCo lor = co l ;
41 }
42
43 // a g e t t e r f o r the co l o r
44 public Color getColor () {
45 return currentCo lor ;
46 }
47
48 // r e s e t the drawPanel model
49 public void r e s e t () {
50 l i s tO fCurve s = new ArrayList<Curve >() ;
51 currentCo lor = Color .BLACK;
52 r epa in t () ;
53 }

27

Lines Commentary

16 Declare DrawPanel to extend JPanel. By extending JPanel we get all the func-
tionality already associated with it. The other advantage of inheriting from JPanel

is that it also lets us use a DrawPanel wherever a JPanel would be permitted. This
makes it easy to add DrawPanels to JFrames or other containers.

18–22 Declare the model variables for the DrawPanel. The drawing is made up of a
collection of curved lines (poly–lines), which we store in an ArrayList. Curve is a
private inner class which is discussed below.
The other two variables, currentCurve and currentColor, are userful while cre-
ating the drawing. Each time a new curve is started currentCurve is updated.
currentColor is updated when setColor() is called.

24–36 The constructor follows a fairly standard pattern for components that extend Swing
components. It does base class initialization, then initializes the model, view and
control.

25 super() initializes the base class, in this case JPanel. It is always a good idea to
explicitly initialize the base class with a call to super. It is required in Java if you
want to pass parameters to the base class constructor.

28 reset() initializes the data model portion of the component. The model initializa-
tion code is placed in a separate method, reset(), so that the drawing can also be
re-initialized later, not just when the application is started.

31 setUI() sets the user interface to our specialized view. DrawPanelUI is discussed
below.

34–35 Mouse handlers are added specifying how the mouse will be used to make a drawing.
MouseHandler and MouseMotionHandler() are discussed separately below.

39–46 setColor() and getColor() are self explanatory.

49–53 reset() re-initializes the model portion of the DrawPanel. The listOfCurves is
set to an empty list and the currentColor is reset to black. The call to repaint()

directs Java to repaint the DrawPanel. Repainting in Swing is asynchronous, much
like event handling. That is, repaint() does not do the repainting. Instead, it
directs Java to repaint the component at its earliest convenience. There are ways to
force immediate repainting, but repaint() is almost always the more appropriate
method to call.
Note that this approach is distinct from the event based approach used in the
previous example. We do not fire a JPanelDataEvent as that event does not exist.
The result of calling repaint() is similar, however. The DrawPanel is redrawn on
the screen.

The DrawPanel class is short because it delegates the responsibility for doing much of the work
to private the model, view and control. For example, a programmer using the DrawPanel class does
not need to know how a curve is represented, so the Curve class is naturally a private inner class.
Similarly, the low-level details of displaying the drawing are best kept private. Again, a private inner
class is ideal.

28

Modeling a Curve

Curve is a private inner class to DrawPanel. It is used to model individual curved lines in the
drawing. Each curve contains a color and a list of points on the curve.

55 // Each curve has a co l o r and a l i s t o f po in t s .
56 // The po in t s form a s e r i e s o f l i n e segments , so i t i s r e a l l y a poly−Line ,
57 // not a t rue curve .
58 // We use an inner c l a s s to model the curve .
59 private class Curve {
60 private Color c o l o r ; // the co l o r o f the curve
61 private ArrayList<Point> po in t s ; // the po in t s on the curve
62
63 // the cons t ruc t o r i n i t i a l i z e s the co l o r and the l i s t
64 public Curve (Color c , Point p) {
65 c o l o r = c ;
66 po in t s = new ArrayList<Point >() ;
67 po in t s . add (p) ;
68 }
69
70 // ge t the Color
71 Color getColor () {
72 return c o l o r ;
73 }
74
75 // re turns an i t e r a t o r over the po in t s
76 public I t e r a t o r <Point> i t e r a t o r () {
77 return po in t s . i t e r a t o r () ;
78 }
79
80 // adds a Point
81 public void add (Point p) {
82 po in t s . add (p) ;
83 }
84 }

60–61 The Curve class contains two data elements, the curve’s color and a list of points.
Joining the points forms a series of very short line segments, a.k.a. a poly–line.
The segments are so short, however, that the curve appears smooth to the naked
eye when rendered.

64–68 The constructor initializes the color and the ArrayList. Because it creates a new
curve when the mouse button is pressed, there will be one point in the curve when
it is constructed, the location where the initial button press occurred.

70–83 All of the methods in the class get or modify data values. This is very common in
model classes, as their primary purpose is to hold the data.

Populating our model with curves is the business of the control code, discussed later.

29

Figure 2.6: An example of a DrawPanel. The image was created by holding down the left mouse
button and dragging the mouse.

Replacing the View

There are several ways to update the view of a component in Java. An elegant and object–oriented
way is to update the view object, a.k.a. the ComponentUI for the component. Swing delegates
responsibility for rendering a component to its ComponentUI object. To create a new view, we
specialize ComponentUI and override its paint() method. As seen in the constructor above, we then
assign the component a new ComponentUI using the setUI() method.

86 // The DrawPanelUI c l a s s knows how to d i s p l a y the drawing
87 private class DrawPanelUI extends ComponentUI {
88 public void paint (Graphics g , JComponent c) {
89 // We i t e r a t e across the l i s t o f curves , drawing each
90 I t e r a t o r <Curve> cu r v e I t e r a t o r = l i s tO fCurve s . i t e r a t o r () ;
91 while (c u r v e I t e r a t o r . hasNext ()) {
92
93 // We i t e r a t e across each curve drawing i t
94 Curve curve = cu rv e I t e r a t o r . next () ;
95 I t e r a t o r <Point> po i n t I t e r a t o r = curve . i t e r a t o r () ;
96
97 // Set the co l o r f o r t h i s curve
98 g . s e tCo lo r (curve . getColor ()) ;
99

100 // I t e r a t e across the Points render ing the l i n e segments
101 Point p1 = po i n t I t e r a t o r . next () ;
102
103 while (p o i n t I t e r a t o r . hasNext ()) {
104 Point p2 = po i n t I t e r a t o r . next () ;
105 g . drawLine ((int) p1 . getX () , (int) p1 . getY () ,
106 (int) p2 . getX () , (int) p2 . getY ()) ;
107 p1 = p2 ;
108 }
109 }
110 }
111 }

30

This is the most complex code of the entire application. The drawing is rendered using nested
loops. The outer loop iterates across all the curves in the drawing. Each curve is rendered by first
setting its color and then iterating across its points drawing the poly–line as we go.

88 Override ComponentUI’s paint() method. It takes two parameters, a Graphics

object and a reference to the component we are painting. The details of working
with Graphics objects are beyond the scope of this text. The class contains over
40 different methods, most of which are related to rendering.

98, 105–
106

Our paint() method only uses two methods from Graphics, setColor() on line
98, and drawLine() on lines 105–106. The semantics of each of these should be
intuitively clear. Further documentation on the Graphics class can be found in the
Java API documentation.

Note that there are several places in the view code that directly access the DrawingPanel’s
model, both when getting the iterators and when invoking setColor() and drawLine(). Again,
because DrawPanelUI is a private inner class, it has direct access to these data and methods.

Mouse Input Handlers

Our final private inner classes are the event handlers. Java separates mouse events into those
associated with moving the mouse and those associated with pressing mouse buttons, so we need
two handlers for the mouse input.

An event adapter implements all the methods of an event listener with empty method bodies.
The notion of an empty method might strike some as strange. The method is called, does nothing
and returns. However, adapters are useful because a handler may inherit from the adapter class and
override only the subset of the methods needed for the particular application. Figure 2.7 shows how
adapters fit into the basic event handling architecture.

Some event sources only fire one type of event, e.g. a JMenuItem only fires an ActionEvent. In
this case, the interface only contains one method declaration and there is no need for an adapter
because there are no ”extra” methods.

The need for adapters arises because the Java event classes sometimes represent multiple closely
related events. For example, the MouseEvent class represents a number of different mouse related
events, including: mouse entered, mouse exited, mouse pressed, mouse released and mouse clicked.
The MouseListener interface contains a method declaration for each of these. If a component is
only interested in mouse clicked events, its mouse handler inherits from the MouseAdapter class
and overrides the mouseClicked() method. When a mouse clicked event is fired by the source it
is handled by the mouse handler. Other mouse events are passed up the inheritance hierarchy and
handled by the mouse adapter’s empty methods.

Both the mouseListener and mouseMotionListener interfaces specify several methods, so we
use adapter classes for both our handlers.

31

Figure 2.7: Java achieves decoupling between the event source and event handler by placing an
interface and an adapter between them. The event listener specifies the methods that the event
source expects in all handlers. The event adapter implements all of the methods of the interface
with empty method bodies.

113 // The f o l l ow i n g event hand l e r s are par t o f the JPanel ’ s c on t r o l
114 // This hand ler adds po in t s to the curren t v e c t o r
115 private class MouseMotionHandler extends MouseMotionAdapter {
116 public void mouseDragged (MouseEvent e) {
117 i f (Sw i n gU t i l i t i e s . isLeftMouseButton (e)) {
118 currentCurve . add (e . getPoint ()) ;
119 r epa in t () ;
120 }
121 }
122 }

While the mouse is dragged, we add points to the curve.

115 declares our handler to be a subclass of MouseMotionAdapter.
MouseMotionAdapter defines empty methods related to moving the mouse.
We just override the one in which we are interested mouseDragged().

116–121 mouseDragged() is called when the user holds down any mouse button and moves
the mouse. We only want to draw if it is the left mouse button, so the code includes
an if statement checking this condition. The result is that points are added to the
current curve when we drag with the left button pressed.

32

123 // When the mouse i s f i r s t pres sed a new curve i s s t a r t e d
124 private class MouseHandler extends MouseAdapter {
125 public void mousePressed (MouseEvent e) {
126 i f (Sw i n gU t i l i t i e s . isLeftMouseButton (e)) {
127 currentCurve = new Curve (currentColor , e . getPoint ()) ;
128 currentCurve . add (e . getPoint ()) ;
129 l i s tO fCurve s . add (currentCurve) ;
130 }
131 }
132 }
133 }

124 MouseHandler extends MouseAdapter for the same reasons as discussed above.

125–131 Our handler only overrides one method, mousePressed(). This handler begins a
new curve.

2.4.2 The Drawing Application

The previous section developed a specialized component, DrawPanel. The DrawPanel is not a
complete program, however. It must be added to a JFrame before it can be displayed. No special
code is needed. It is just added to the JFrame in the same way we previously added buttons and
textboxes. As we saw when developing the DrawPanel, however, it contains some public functionality
like changing drawing colors and clearing the panel, that is only available by calling its methods.
Dropdown menus are the ideal way to access these methods.

In this section complete our develop of a drawing program, using a JFrame with dropdown menus
to display and manipulate a DrawPanel.

Swing Menu Classes

There are a number of classes associated with dropdown menus in Swing.

• There is a single JMenuBar per JFrame. It contains the menus and menu items.

• JMenus are added to the menu bar.

• JMenuItems are added to the menus. JMenuItems fire ActionEvents.

• Event handlers are registered with the menu items.

The menu for the application consists of

• a single menu, labeled ‘File’

• three menu items in the File menu: ’Color’, ’Clear’ and ’Exit’

33

1 import javax . swing . ∗ ;
2 import javax . swing . p l a f . ∗ ;
3 import java . awt . ∗ ;
4 import java . awt . event . ∗ ;
5 import java . u t i l . ∗ ;
6
7 /∗∗
8 ∗ This c l a s s implements a drawing program in java
9 ∗

10 ∗ @author S tuar t Hansen
11 ∗ @version September 2008
12 ∗/
13
14 public class DrawProgram extends JFrame {
15 // These e lements form the GUI o f the a p p l i c a t i o n
16 DrawPanel drawPanel = new DrawPanel () ;
17 JMenuBar menuBar = new JMenuBar () ;
18 JMenu menu = new JMenu (” F i l e ”) ;
19 JMenuItem co lor I t em = new JMenuItem(”Color ”) ;
20 JMenuItem c l ea r I t em = new JMenuItem(”Clear ”) ;
21 JMenuItem ex i t I t em = new JMenuItem (”Exit ”) ;
22
23 public DrawProgram () {
24 super (”Line Draw”) ;
25
26 // add the menu to the a p p l i c a t i o n Frame
27 setJMenuBar (menuBar) ;
28 menu . add (co lo r I t em) ;
29 menu . add (c l ea r I t em) ;
30 menu . add (ex i t I t em) ;
31 menuBar . add (menu) ;
32
33 // se tup the drawPanel
34 getContentPane () . add (drawPanel) ;
35 drawPanel . setBackground (Color . white) ;
36
37 // Set the curren t Color
38 drawPanel . s e tCo lo r (Color . b lack) ;

Lines Commentary

16–21 Declare and instantiate all the components for the application, including the
DrawPanel and all parts of the menu.

24 The call to super() initializes the JFrame.

25–30 Setup the menu for the application. We add the menu bar to the application, add
the menu items to the menu, and and the menu to the menu bar.

33–38 Add a DrawPanel to the application and set a couple of its initial properties.

34

39 // Change the drawing co l o r
40 co lo r I t em . addAct ionLis tener (
41 new Act ionL i s t ene r () {
42 public void act ionPerformed (ActionEvent e) {
43 Color o ldColor = drawPanel . getColor () ;
44 Color newColor = JColorChooser . showDialog (null ,
45 ”Choose a new co l o r ” , o ldColor) ;
46 i f (newColor != null)
47 drawPanel . s e tCo lo r (newColor) ;
48 }
49 }
50) ;
51
52 // Clear the drawing by r e p l a c i n g the DrawingPanel
53 c l ea r I t em . addAct ionLis tener (
54 new Act ionL i s t ene r () {
55 public void act ionPerformed (ActionEvent e) {
56 drawPanel . r e s e t () ;
57 }
58 }
59) ;
60
61 // Exi t the system e l e g a n t l y
62 ex i t I t em . addAct ionLis tener (
63 new Act ionL i s t ene r () {
64 public void act ionPerformed (ActionEvent e) {
65 System . e x i t (0) ;
66 }
67 }
68) ;
69
70 // Set the a p p l i c a t i o n window ’ s p r o p e r t i e s
71 s e t S i z e (400 , 400) ;
72 se tDe fau l tC lo seOperat i on (JFrame .EXIT ON CLOSE) ;
73
74 // d i s p l a y the a p p l i c a t i o n window
75 s e tV i s i b l e (true) ;
76 }
77
78 // a very s imple main program
79 public stat ic void main (St r ing args []) {
80 new DrawProgram () ;
81 }
82 }

35

40–68 As with buttons, menu items fire ActionEvents. We register an ActionListener

with each menu item. In this example, we use anonymous inner classes for each of
the ActionListeners.

40–50 The code within each handler method is relatively short. The handler for the Color

menu opens a JColorChooser. If the user chooses a new color, that color is passed
along to the drawPanel. If the user cancels, null is returned to the handler, in which
case no new color is set.

53–59 The Clear handler clears the drawPanel’s model. Note that reset() contains a
call to repaint(), so that when the model is cleared, the display is also cleared.

62–69 The handler for Exit, exits the application. System.exit() takes an integer param-
eter that encodes why the application terminated. Zero is the standard argument
to mean that the application terminated normally.

71–75 The end of the constructor sets some main window parameters for the JFrame.
The main method starts the program running by creating a new object of type
DrawProgram.

2.5 List of Doubles

This section presents a complete, longer Java application that maintains a list of floating point
numbers, Doubles in Java. The interface to the application is shown in Figure 2.8.

There are several very simple use cases:

• The user enters a number in the input field and presses Enter. The number is added to the
list.

• The user may also select an element in the list and delete it by clicking Delete.

• The user may clear the entire list by clicking Clear All.

Whenever the list is updated, both the average and the maximum are recalculated and updated,
as well. If the list becomes empty, the the average and the maximum are set to NaN, which stands
for ”Not a Number”.

While this is an admittedly contrived application designed for pedagogic purposes, simple sta-
tistical applications similar to this one have many uses. Unfortunately for us, a spreadsheet will
provide the needed functionality and more.

The example illustrates several of the more advanced points mentioned earlier in this chapter.

• Events are propagated through the system. E.g. pressing enter on the textfield updates the
list, which in turn fires events that update the average and maximum. New averages and
maximums update the display by again firing events.

• Like most programs, there are many things that can go wrong. We handle exceptions within
our event handlers, printing error messages as needed. Figure 2.8 shows the error displayed
when a user tries to enter non–numeric data into the list.

36

Figure 2.8: The user may add and delete numbers from the list. The application automatically
updates the displayed average and maximum using event based techniques.

37

2.5.1 Double List Model

In the previous example we saw how we could specialize a JList’s model. In that example we
specialized it so that the list was maintained in lexicographic order.

In this example we also specialize the model, but in a different way. Here, only Doubles may be
added to the list.

1 import javax . swing . DefaultListModel ;
2
3 /∗∗
4 ∗ DoubleListModel i s the model f o r the Doub leLis t c l a s s .
5 ∗ I t o v e r r i d e s a coup le o f methods so t ha t on ly Doubles are
6 ∗ p laced in t o i t .
7 ∗
8 ∗ @author S tuar t Hansen
9 ∗ @version September 2008

10 ∗/
11
12 public class DoubleListModel extends DefaultListModel {
13 // Overr ides add element so t ha t on ly Doubles are added
14 public void addElement (Object obj) {
15 Double d = Double . parseDouble (obj . t oS t r i ng ()) ;
16 addElement (d) ;
17 }
18
19 // A s p e c i a l i z e d addElement f o r Doubles
20 public void addElement (Double d) {
21 super . addElement (d) ;
22 }
23
24 // Overr ides toArray () so t ha t the re turned Array conta ins Doubles
25 public Double [] toArray () {
26 Object [] tempArr = super . toArray () ;
27 Double [] dArr = new Double [tempArr . l ength] ;
28 for (int i =0; i<tempArr . l ength ; i++)
29 dArr [i] = (Double) tempArr [i] ;
30 return dArr ;
31 }
32 }

38

Lines Commentary

12 The DoubleListModel class extends the DefaultListModel class overriding several
methods in it.

14–17 addElement(Object obj) is overridden. The method converts its Object parame-
ter first to a String and then to a Double. In Java all objects have a toString()

method, so this conversion is guaranteed to succeed. It then proceeds to convert
the String to a Double. This code works correctly if the user has entered a valid
Double. While not explicit in the code, Java throws a ClassCastException occurs
if the conversion fails. Finally, we add the newly created Double to the list, using
the overloaded addElement(Double d) method.

20–22 We also implement a specialized addElement(Double d) method that adds Doubles
to the list. Note that we are still using the list data structure maintained by the
super class, DefaultListModel. That list is a list of objects. By controlling access
to it by overriding methods, we limit the values that may be added to just Doubles.
DefaultListModel contains several other methods that add or modify values in the
list. These include: add(), insertElementAt(), set() and setElementAt(). A
more complete DoubleListModel class would also override these methods. Since
they aren’t necessary for our example, they are ignored here.

25–31 Finally, we override DefaultListModel’s toArray() method so that the array re-
turned is an array of Doubles. We will use toArray() to get the values for calcu-
lating the average and maximum. Overriding toArray() keeps us from having to
cast each element to a Double after accessing it in the original array. As with the
previous note, there are several other ”getter” methods that could be overridden,
including: elementAt(), elements(), firstElement(), get(), getElemetnAt(),
lastElement(), and remove(). Again, these are ignored, since they are not used
by our application.

39

2.5.2 Average and Max Classes

The Average and Max classes model the two statistics displayed in the user interface. Whenever
the average or the max is recalculated they fire a data changed event that notifies all listeners that
they should take appropriate action. Note that from a practical point of view, we could have the
average and maximum calculations done by methods within the application, not in separate classes,
but that is not in the spirit of demonstrating data changed events.

The developers of Java Beans realized the importance of this type of event and included support
for them in the Java Beans package. This support includes:

• The PropertyChangeEvent Class

The PropertyChangeEvent class is used to encapsulate the information needed to process
property changes. Each instance includes four pieces of information, the event source, the
name of the property changed, the original value of the property, and the new value of the
property. In java event objects are passive, containing the information needed to handle the
events.

• The PropertyChangeListener Interface

All classes wanting to receive PropertyChangeEvents must implement the PropertyChangeListener
interface. The interface contains a single method, void propertyChange(PropertyChangeEvent

evt). Event handling code goes in this method.

• The PropertyChangeSupport Class

There are still two pieces of functionality missing for us to be able to use PropertyChange

events. We need to be able to register handlers with sources and fire the events to each
handler when the event occurs. The PropertyChangeSupport class contains numerous meth-
ods, but the two that are central to our discussion are: addPropertyChangeListener() and
firePropertyChange().

To use this class we instantiate an instance of it for each property of interest. We then delegate
responsibility for registering listeners and firing events to that instance.

40

1 import java . beans . ∗ ;
2
3 /∗∗
4 ∗ The Average c l a s s f i n d s and keeps t rack o f the average
5 ∗ o f an array o f Doubles .
6 ∗
7 ∗ @author S tuar t Hansen
8 ∗ @version September 2008
9 ∗/

10 public class Average {
11 // We maintain the average in order to have an o ld
12 // average f o r the proper ty change event
13 private Double average ;
14
15 // We use pcs to f a c i l i t a t e our proper ty change even t s
16 private PropertyChangeSupport pcs ;
17
18 // The d e f a u l t cons t ruc t o r
19 public Average () {
20 average = new Double (Double .NaN) ;
21 pcs = new PropertyChangeSupport (this) ;
22 }
23
24 // Return the current Average
25 public Double getAverage () {
26 return average ;
27 }
28
29 // Return the current Average as a S t r ing
30 public St r ing toS t r i ng () {
31 return average . t oS t r i ng () ;
32 }
33
34 // Find the average o f an enumeration o f Doubles
35 public Double f indAverage (Double [] dArr) {
36 Double oldAverage = average ;
37
38 i f (dArr . l ength > 0) {
39 double sum = 0 . 0 ;
40 int count = 0 ;
41 for (Double d : dArr) {
42 sum += d ;
43 count++;
44 }
45 average = new Double (sum/count) ;
46 }
47 else

48 average = Double .NaN;
49
50 f i rePropertyChange (new PropertyChangeEvent (this , ” average ” ,
51 oldAverage , average)) ;
52 return average ;
53 }

41

Lines Commentary

1 Import java.beans.*. This is the package that contains the PropertyChange

classes.

16 Declare the PropertyChangeSupport object. The PropertyChangeSupport class
contains methods that allow us to register listeners and fire events to them whenever
the average is updated.

19–22 The constructor is quite simple. It initializes the average and the
PropertyChangeSupport object.

35–53 Calculate the average of an array of Doubles.

50–51 An interesting part of this method is where it fires the PropertyChangeEvent.
The PropertyChangeSupport class was designed for this purpose. We included the
pcs object in our class and then use it to register listeners and fire events. The
PropertyChangeEvent constructor takes four parameters, the event source, this;
the name of the property changed, in our case average; the old value and the new
value.

55 // Fire a proper ty change
56 public void f i rePropertyChange (PropertyChangeEvent e) {
57 pcs . f i rePropertyChange (e) ;
58 }
59
60 // Add a proper ty change l i s t e n e r
61 public void addPropertyChangeListener (PropertyChangeListener pc l) {
62 pcs . addPropertyChangeListener (pc l) ;
63 }
64
65 // De le te a proper ty change l i s t e n e r
66 public void removePropertyChangeListener (PropertyChangeListener pc l) {
67 pcs . removePropertyChangeListener (pc l) ;
68 }
69 }

56–68 Place wrapper methods around some of the PropertyChangeSupport methods, fa-
cilitating public access to them.

The Max class directly parallels the code in the Average class and is omitted for the sake of
brevity.

2.5.3 The Main Class

The DoubleListMain class builds the application from the previous classes, Swing components and
handlers.

42

1 import java . awt . ∗ ;
2 import javax . swing . ∗ ;
3 import java . awt . event . ∗ ;
4 import javax . swing . event . ∗ ;
5
6 /∗∗
7 ∗ DoubleListMain puts t o g e t h e r an app l i c a t i o n t ha t records numbers
8 ∗ i n t o a l i s t and r epo r t s t h e i r average and max .
9 ∗

10 ∗ @author S tuar t Hansen
11 ∗ @version September 2008
12 ∗/
13
14 public class DoubleListMain extends JFrame {
15 private JScro l lPane pane ; // s c r o l l p an e f o r the l i s t
16 private JL i s t l i s t ; // the l i s t ’ s d i s p l a y
17 private DoubleListModel model ; // the model ho l d ing the l i s t
18
19 private JLabel add ; // the l a b e l f o r the add f i e l d
20 private JTextFie ld inputF i e ld ; // where the numbers are entered
21 private JLabel e r ro rLabe l ; // a l a b e l to d i s p l a y error messages
22
23 private JLabel avgLabel ; // where the average i s d i s p l a y ed
24 private Average avg ; // c a l c u l a t e s the average
25
26 private JLabel maxLabel ; // where the max i s d i s p l a y ed
27 private Max maximum; // f i n d s the maximum
28
29 private JButton de l ; // d e l e t e s the s e l e c t e d element
30 private JButton c l e a r ; // c l e a r s the en t i r e l i s t
31
32 // The cons t ruc t o r ”wires ” t o g e t h e r the a p p l i c a t i o n
33 public DoubleListMain () {
34 Container cPane = getContentPane () ;
35 cPane . setLayout (null) ;
36
37 // Set up the l i s t and i t s model
38 model = new DoubleListModel () ;
39 l i s t = new JL i s t () ;
40 l i s t . setModel (model) ;
41 pane = new JScro l lPane (l i s t) ;
42 pane . s e t S i z e (100 , 150) ;
43 pane . s e tLocat i on (100 , 150) ;
44 cPane . add (pane) ;
45
46 // Set up the l a b e l f o r the add f i e l d
47 add = new JLabel (”Add”) ;
48 add . s e tLoca t i on (50 , 5 0) ;
49 add . s e t S i z e (4 0 , 3 0) ;
50 cPane . add (add) ;
51
52 // Set up the input t e x t F i e l d
53 inputF i e ld = new JTextFie ld () ;
54 inputF i e ld . s e tLocat i on (100 , 5 0) ;
55 inputF i e ld . s e t S i z e (100 , 3 0) ;
56 inputF i e ld . addAct ionLis tener (new AddHandler ()) ;
57 cPane . add (inputF i e ld) ;

43

Lines Commentary

17, 24,
27

The application’s model consists of model – which contains the data from the list,
avg – which contains the average of the data, and max – which contains the maximum
of the data.

15–30 The GUI consists of the usual assortment of buttons, labels, textfields and lists.

38–44 The model is placed in the list. The list is placed in the scrollpane. The scrollpane
is added to the contentPane.

47–50 We add a label and a textfield to the window. We register an AddHandler with the
textfield as a method of adding to the list. All the handler code appears below.

53–57 We add the textfield used for input to the application.

59 // Set up the l a b e l f o r error messages
60 e r ro rLabe l = new JLabel (””) ;
61 e r ro rLabe l . setForeground (Color . red) ;
62 e r ro rLabe l . s e t S i z e (400 , 3 0) ;
63 e r ro rLabe l . s e tLocat i on (50 , 100) ;
64 cPane . add (e r ro rLabe l) ;
65
66 // Set up the d e l e t e bu t ton
67 de l = new JButton (” Delete ”) ;
68 de l . s e t S i z e (100 , 3 0) ;
69 de l . s e tLoca t i on (210 , 5 0) ;
70 de l . addAct ionLis tener (new DeleteHandler ()) ;
71 cPane . add (de l) ;
72
73 // Set up the c l e a r bu t ton
74 c l e a r = new JButton (”Clear Al l ”) ;
75 c l e a r . s e t S i z e (100 , 3 0) ;
76 c l e a r . s e tLocat i on (320 , 5 0) ;
77 c l e a r . addAct ionListener (new ClearHandler ()) ;
78 cPane . add (c l e a r) ;
79
80 // Set up the average va lue and l a b e l
81 avg = new Average () ;
82 avgLabel = new JLabel (”Average = NaN”) ;
83 avgLabel . s e t S i z e (200 , 3 0) ;
84 avgLabel . s e tLoca t i on (260 , 150) ;
85 model . addLis tDataLi s tener (new AverageAdapter ()) ;
86 avg . addPropertyChangeListener (new AvgPropHandler ()) ;
87 cPane . add (avgLabel) ;
88
89 // Set up the maximum va lue and l a b e l
90 maximum = new Max() ;
91 maxLabel = new JLabel (”Maximum = NaN”) ;
92 maxLabel . s e t S i z e (200 , 3 0) ;
93 maxLabel . s e tLocat i on (260 , 200) ;
94 model . addLis tDataLi s tener (new MaximumAdapter ()) ;
95 maximum. addPropertyChangeListener (new MaxPropHandler ()) ;
96 cPane . add (maxLabel) ;
97
98 // Set a few windowing parameters and show the frame .
99 s e t S i z e (500 , 400) ;

100 se tDe fau l tC lo seOperat i on (EXIT ON CLOSE) ;
101 s e tV i s i b l e (true) ;
102 }

44

60–64 We place an error message label under the input field. The message is empty, unless
an error occurs.

67–78 We add two buttons to the application, one to delete individual items from the list
and one to clear the entire list. The registered handlers are defined below.

81–96 We add the Average and Max objects to the application, along with their GUI
representations.

85, 96 Add the ListDataListeners to the model. Events are fired from the model to these
handlers when data is added or deleted from the model, updating the average and
the maximum.

99–101 We set a few main window parameters and open the window.

2.5.4 Event Handler Classes

All the handlers are defined as inner classes to the application class. This gives them access to all
the various application components they need to carry out their activities.

104 // This c l a s s i s the hand ler f o r adding numbers
105 private class AddHandler implements Act ionL i s t ene r {
106 public void act ionPerformed (ActionEvent e) {
107 try {
108 St r ing s t r = inputF i e ld . getText () ;
109 model . addElement (s t r) ;
110 inputF i e ld . setText (””) ;
111 e r ro rLabe l . setText (””) ;
112 }
113 catch (Exception ex) {
114 e r ro rLabe l . setText (”Must only add numbers to the l i s t . ”) ;
115 }
116 }
117 }
118
119 // This c l a s s i s the hand ler f o r removing numbers
120 private class DeleteHandler implements Act ionL i s t ene r {
121 public void act ionPerformed (ActionEvent e) {
122 try {
123 int index = l i s t . g e tSe l e c t ed Index () ;
124 model . remove (index) ;
125 e r ro rLabe l . setText (””) ;
126 }
127 catch (Exception ex) {
128 e r ro rLabe l . setText (”Error ! Use mouse to s e l e c t element to remove”) ;
129 }
130 }
131 }
132
133 // This c l a s s i s the hand ler f o r c l e a r i n g the l i s t
134 private class ClearHandler implements Act ionL i s t ene r {
135 public void act ionPerformed (ActionEvent e) {
136 model . c l e a r () ;
137 }
138 }

45

105–117 The addHandler is called when the enter key is pressed in the textfield. The data in
the textfield is added to the list. Note the try -- catch block. As we saw earlier,
if the data we try to add, str, cannot be parsed into a Double, addElement() will
throw an exception. This exception is caught and an appropriate error message is
printed to the errorLabel.

120–131 The DeleteHandler deletes individual items from the list. We choose the item to
delete by clicking on it with the mouse. We then click the Delete button, with
which this handler is registered. The getSelectedItem() method in the JList

class returns the index of the item that has been clicked. We then remove it from
the model. If no item has been clicked an exception is raised, which again is handled
by printing a message to the errorLabel.

46

140 // This c l a s s updates the average
141 private class AverageAdapter implements Li s tDataL i s t ene r {
142 public void contentsChanged (ListDataEvent e) {}
143 public void intervalAdded (ListDataEvent e) {
144 Double [] temp = model . toArray () ;
145 avg . f indAverage (temp) ;
146 }
147
148 public void intervalRemoved (ListDataEvent e) {
149 Double [] temp = model . toArray () ;
150 avg . f indAverage (temp) ;
151 }
152 }
153
154 // This c l a s s updates the maximum
155 private class MaximumAdapter implements Li s tDataL i s t ene r {
156 public void contentsChanged (ListDataEvent e) {}
157 public void intervalAdded (ListDataEvent e) {
158 Double [] temp = model . toArray () ;
159 maximum. findMax (temp) ;
160 }
161
162 public void intervalRemoved (ListDataEvent e) {
163 Double [] temp = model . toArray () ;
164 maximum. findMax (temp) ;
165 }
166 }
167
168 // This hand ler updates the JLabel when the average changes
169 private class AvgPropHandler implements PropertyChangeListener {
170 public void propertyChange (PropertyChangeEvent e) {
171 avgLabel . setText (”Average = ” + avg . getAverage ()) ;
172 }
173 }
174
175 // This hand ler updates the JLabel when the maximum changes
176 private class MaxPropHandler implements PropertyChangeListener {
177 public void propertyChange (PropertyChangeEvent e) {
178 maxLabel . setText (”Maximum = ” + maximum. getMaximum ()) ;
179 }
180 }
181
182
183 // A one l i n e main program
184 public stat ic void main (St r ing [] a rgs) {
185 new DoubleListMain () ;
186 }
187 }

47

134–138 The ClearHandler clears the entire list.

141–152 The AverageAdapter recalculates the average when data is added or removed from
the list.

155–166 The MaximumAdapter recalculates the maximum value when data is added or re-
moved from the list.

169–180 The property change handlers update the JLabels in the GUI when the average
or the maximum change. The handlers that make the changes to average and
maximum could also set the values in the labels. We use this method to illustrate
cascading events, and to demonstrate how to use PropertyChangeEvents.

184–186 The main method starts the application running.

2.5.5 Event Propagation

This example contains a significant amount of code. While all the small pieces of it hopefully make
sense, it is worth looking at the big picture, too, to see the cascade of changes that takes place when
a number is added to (or deleted from) the list.

To add a number to the list:

1. The number is entered in the inputField.

2. Enter is pressed which causes the inputField to fire an ActionEvent.

3. The AddHandler runs, updating the model with the new value.

4. The model fires a ListDataEvent which is handled by both the AverageAdapter and the
MaximumAdapter. After updating their internal values, each of these in turn fires a PropertyChangeEvent.

5. The AvgPropHandler receives the PropertyChangeEvent from the AverageAdapter and up-
dates the GUI’s average label.

6. The MaxPropHandler receives the PropertyChangeEvent from the MaximumAdapter and up-
dates the GUI’s maximum label.

A total of four events and five handlers are used to add a single value to the list. An equal
number is needed to deleted an element!

2.6 Procedural Event Programming

Throughout this chapter we have discussed event based programming using the language of objects.
Our event sources, handlers and application entities were all objects. Event based programming can
also be done using a procedural model.

In procedural programming objects don’t exist. We have data and procedures a.k.a. functions
that manipulate the data. Functions replace methods. They exist at the top level, not within a
class or object. An event handler is a function, typically called a callback function. The callback
function is still registered dynamically. That is, during a run, not at compile time, we setup what
function is called when an event occurs. This is still polymorphism, just based on functions rather
than objects.

In languages like C and C++ functions may be passed as parameters to other functions. A
function parameter is known as a function pointer. GUI libraries like the GL Utility Toolkit (GLUT)
contain registration functions that take a function pointer as a parameter and register it to respond
to events.

48

2.7 Summary

In this chapter you have seen several examples of event based programs in Java that have illustrated
many of the main features of the paradigm. You are now ready to start developing your own GUI
applications. There are dozens of more Swing classes and hundreds of more event classes, but they
all work together following the same paradigm. You should be able to read the documentation pages
and work with them easily.

49

