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Preface

Introduction

This is a book about event based programming. There are dozens of computer science books that
have ’event’ or ’event based’ in their titles. Almost all of these are about some particular language
or system that uses events. This book is different. Our goal is to introduce you to event based
programming — and, more generally, event based systems — as a computer science paradigm that
focuses on the fundamental ideas relating to understanding, designing, implementing, and testing
loosely coupled systems.

One of our objectives is to introduce you to approaches used in event based programming and
to illustrate them with carefully crafted examples. Programming event based systems is different
from procedural programming or object-oriented programming. If the solution is to be event based,
programmers think about the problem differently. Its important that you understand why an event
based approach is more appropriate for some problems than for others.

Event based programming also has its own set of challenges, principally because almost all event
based systems are nondeterministic and are inherently difficult to test and debug. Another of our
objectives is to show you how to use conceptual and design tools to create event based systems that
behave correctly.

What you will learn from this book is applicable to any event based language or library. Since
this is a book about programming, you will encounter many programs as you read it. We have chosen
Java as our principal implementation language. Java is available almost universally for hardware
platforms and operating systems, and Java has native support for events. However, this book is not
about making you an expert in Java. Instead, you will gain an understanding of how to develop
event based software, with Java serving as a particular implementation language. In the end, you
will be able to develop reasonably sized event based applications in Java, and you will be able to
take the principles and ideas you learn and apply them to new and different event based languages
as needed.

Computing is continually changing. Computing professionals are always playing catch-up, trying
to keep their technical knowledge current with regard to new languages, operating systems, and
application versions. On the other hand, programming paradigms change very little. Procedural
programming — with its while loops, if statements, and procedure calls — has remained largely
unchanged since the 1950s. Similarly, the concepts behind object-oriented programming have been
relatively stable for over 20 years. Procedural programming and object-oriented programming are
paradigms. They aren’t about any particular language. Instead, they give the programmer problem
solving techniques and methodologies that are applicable in a variety of languages.

In recent years, event based programming has emerged as its own distinct paradigm. Its notions
of runtime association of sources and handlers, and minimal timing assumptions apply, and will
continue to apply, no matter how many new event based languages are released. The fundamental
ideas behind the paradigm are stable. By emphasizing an understanding of the paradigm, we will



lay a foundation that will let you easily pick up new event based languages as they emerge.

Events are incredibly important in modern computing. They occur in graphical user interfaces
(GUIs), operating systems, discrete event simulation, database management systems and many
other computing-related fields. They are also integral to the operation of user interfaces in modern
electronic devices such as cellular phones and television sets. Because events are so ubiquitous,
it is reasonable to expect that you, as a student of computing, should understand them in detail.
Unfortunately, you are more likely to learn first about event based programming when you are asked
to develop GUIs — and then you would typically be exposed only to what you need to make the GUI
operate. As you will see, events have many more applications than implementing GUIs.

Event based systems are commonplace, but they have distinct properties and pose unique chal-
lenges for developers. Event based programming deserves a broad—based comprehensive treatment
in the computer science curriculum. This book is an effort to provide that treatment.

Audience

You should be comfortable approaching the material in this book if you have a background equivalent
to a two-semester undergraduate-level course in programming with some experience using an object-
oriented language. Knowing Java is a plus, but you should be able to understand the programming
examples without it.

You should be comfortable dealing with elementary data structures such as arrays and lists. We
may refer occasionally to more advanced data structures, in which case we will provide background
discussion and pointers to resources where you can study relevant material. You should also be
acquainted with classes, objects, inheritance, and polymorphism, though again we may take the
opportunity to refresh your knowledge of these ideas when they play a particularly important role
in our discussions or in example code. We do not expect you to have studied mathematics beyond
elementary calculus and/or discrete math.

Resources

While Java is our primary implementation language in this book, other languages (C++, Python,
and C#, for example) — along with appropriate library support — can serve equally well. We will
post sample code on our course website (http://cs.uwp.edu/Events) to supplement the code in
this book as it becomes available.
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