
Interpreting Java Program Runtimes
 Stuart Hansen

Department of Computer Science
University of Wisconsin - Parkside

Kenosha, WI 53144
(262) 595 - 3395

hansen@cs.uwp.edu

ABSTRACT
Many instructors use program runtimes to illustrate and reinforce
algorithm complexity concepts. Hardware, operating system and
compilers have historically influenced runtime results, but
generally not to the extent of making the data difficult to interpret.
The Java virtual machine adds an additional layer of software,
making it much harder to obtain easy to interpret results. This
paper presents some of the basic issues the author and his students
have encountered when analyzing Java program runtimes and
briefly discusses strategies to address them.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement Techniques,
Performance

General Terms
Algorithms, Performance, Experimentation.

Keywords
Java virtual machine, Program runtime, Garbage Collection,

1. INTRODUCTION
The author recently taught Data Structures and Algorithms for the
first time since his department’s curriculum was converted from
C++ to Java. Like many instructors, he wished to demonstrate
how the complexity of an algorithm directly impacts its
implementation’s runtime. The importance of this type of activity
is well recognized by computer science educators [2, 7]. During
the semester, the author and his students collected runtime data
from a variety of programs, but found themselves repeatedly
confused by the data because of influences from the virtual
machine. Figures 1 through 3 show runtimes for sample
programs. The data presented in these figures were obtained
using Sun’s SDK 1.4.1 running under Debian Linux, Version 3.0
on a 2.4 Gigahertz machine with 512 Megabytes of memory.
Times were measured using the method
System.currentTimeMillis(). Similar results may be
obtained using other hardware and software configurations.

Figure 1 shows the runtimes for repeated calls to
Arrays.sort() with random int arrays of size 20,000.
Arrays.sort uses a version of Quicksort, which is an unstable
algorithm. In the long run we expect to see some fluctuation in
runtimes. This is not the cause of the problem here, however, as
repeated runs of our program with different random arrays
produce very similar results. The virtual machine is causing the
method to run more slowly on the first call than on subsequent
calls.

Runtimes for Arrays.sort

0

5

10

15

20

1 2 3 4 5

Iteration

Ti
m

e
(in

 m
il

lis
ec

on
ds

)

Sort Runtimes

0

500

1000

1500

2000

2500

3000

0 50000 100000 150000 200000

ArraySize

Ti
m

e
(in

 S
ec

on
ds

)

Figure 2 shows the runtimes for a Java program implementing a
O(n2) sort algorithm. The sort is not one of the standard O(n2)
sorts, however. The author had recently introduced his students
to the fact that instantiating a Java array is a O(n) operation, since

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Figure 1. Runtimes of Arrays.sort called five times in
succession on random int arrays of size 20,000. The
first run took significantly longer than any of the others.

Figure 2. Runtimes obtained for a O(n2) sort program.

all cells in the array are initialized. To reinforce this idea, he
modified the merge() method from a MergeSort program to use a
temporary array the size of the entire array being sorted. This one
line change makes the MergeSort program O(n2). The author was
expecting the graph to be roughly parabolic. Instead, it appears to
have near linear behavior, with a major discontinuity occurring
between 130,000 and 135,000.

Figure 3 shows runtimes for rehashing a Java Hashtable. This
experiment was suggested by Michael Clancy during a panel
discussion at SIGCSE 2002 [7]. A Hashtable of size 1,000,000
was created and a varying number of Integers was added to it.
Since the size of the Hashtable is fixed, rehashing is linear in the
number of elements added. The author was expecting the graph in
Figure 3 to be roughly a single straight line. Instead, the graph
consists of two line segments, with the runtimes for larger data
sets being significantly faster than runtimes for smaller data sets.
Somehow between 120,000 and 130,000 the program speeds up
by over a factor of five.

Rehash Runtimes

0

0.1

0.2

0.3

0.4

0.5

0 500000 1000000 1500000 2000000

Number of Elements in Hashtable

Ti
m

e
(in

 s
ec

on
ds

)

These examples illustrate that interpreting Java program runtimes
is difficult. The goal of this paper is to explain the features of the
Java virtual machine that are major influences on program
runtimes and show how they may be explained and at least
partially controlled to obtain runtimes that reflect the complexity
of the underlying algorithm. What we want is to be able to time a
O(n2) algorithm and plot the results, obtaining something akin to a
parabola.

This goal is very different than performance tuning. Performance
tuning looks at the virtual machine’s features with the goal of
making a program run faster. There are many texts and papers
that address Java performance tuning [1, 6, 8, 9, 10]. Sun’s
Hotspot virtual machine even tries to tune performance of the
program dynamically. This paper does not discuss how to make
Java programs run faster. In fact, we will sometimes accept a hit
in overall performance if we can thereby obtain runtimes more
consistent with the underlying algorithm.

2. JAVA VIRTUAL MACHINES
Most CS instructors are aware of how a computer’s hardware and
system software influence the runtime of a program. The CPU
speed, the amount of main memory, the amount of cache, the

operating system and the compiler all play significant roles. We
take these into account when designing experiments to illustrate
algorithm complexity. For example, if we are working with data
structures, we limit their size so that they will fit into physical
memory, because we know that as soon as the program starts
swapping pages to virtual memory it will slow down significantly.
In general, however, it is not difficult to obtain runtimes that are
consistent with the underlying algorithm.

Java virtual machines impose another level of software between
the program and the operating system. There are many different
Java virtual machines available. This paper only discusses Sun’s
Hotspot virtual machine (JVM). As Java and the JVM have
matured, a number of issues have arisen that make designing
experiments and interpreting empirical data more difficult.
Among the issues are:

1) Starting a Java application incurs a sizable cost. Processes
and threads must be created and the JVM must be initialized.
Library files must be opened and a fairly large set of classes
must be loaded. Only then is programmer code invoked.

2) The JVM automates heap management. The heap is the area
of memory where all objects are allocated. Heap management
consists of controlling the size of the heap and removing
objects from the heap that are no longer in use. All Java
instructors know that programmers no longer need to
explicitly free memory resources, as the garbage collector
takes care of it for us. We also realize that garbage collection
takes time. It is important that we understand how garbage
collection works and the effect it can have on a program’s
runtime.

3) The JVM interprets byte code but also compiles byte code into
native code for better performance. There are tradeoffs as
compiling takes time, but the resulting native code may run
significantly faster.

4) The JVM dynamically optimizes running programs. The
Hotspot virtual machine takes its name from its ability to
analyze a running program, find the bottlenecks, or hotspots,
in the program and apply optimizations on the fly.

3. PROGRAM STARTUP
The JVM is resource intensive at program startup. As an
example, consider the data presented in Figure 1. It shows the
runtimes obtained when invoking Arrays.sort() five times
in succession on random int arrays of size 20,000. The first
invocation takes 18 milliseconds, which is more than the next four
invocations combined.

Figure 1 only presents part of the picture, however. There are
startup costs that are not captured by
System.currentTimeMillis(). The operating system
creates one or more processes for the virtual machine. The JVM
is loaded and initialized. Standard libraries must be located and
opened. Since these actions occur before the first call to
System.currentTimeMillis(), they affect the measured
elapsed time for running a Java program, but do not influence our
recorded runtime and are not discussed further here.

Once the JVM is started, running an application requires loading
and initializing a collection of classes. The simplest possible Java
application, one with a completely empty main method, loads 280

Figure 3. Runtimes obtained when rehashing a
hashtable of size 1,000,000.

classes during execution. Loading classes into the JVM is
generally a disk-bound activity which is slow compared to CPU
activities.

The high cost of the first call to Arrays.sort() in Figure 1 is
due to loading the Arrays class. On the system where the data
was collected, the Java libraries are installed on a file server,
which slowed the class loader even further.

Frequently, when we are measuring program runtimes, we are
interested in taking a series of measurements. It is best to warm
up the virtual machine before we start taking collecting data. As a
rule of thumb, call each method to be timed at least twice before
beginning to record times.

4. HEAP MANAGEMENT
All objects in a Java program live in the JVM’s heap. When an
object is instantiated, memory is allocated for it in the heap.
Sometime after the program finishes using an object, the memory
is returned to the free portion of the heap for reallocation.
Because Java is object-oriented, many objects are created during
the run of even a simple Java program, making heap management
important. The two most important issues related to heap
management are garbage collection and heap size.

4.1 The JVM’s Garbage Collector
When an object is no longer referenced by a program it becomes
garbage. Unlike older programming languages, e.g. Pascal, C and
C++, it is no longer the programmer’s responsibility to return
garbage to the heap for reuse. Instead, the JVM’s garbage
collector takes care of it automatically. The garbage collector
finalizes each object and then returns its memory to the heap [3, 4,
5]. There are many different garbage collection algorithms, each
with various strengths and weaknesses [5]. The Java Virtual
Machine Specification does not indicate which algorithm(s)
should be used. It is left to the virtual machine implementer to
choose [6]. Sun’s JVM can use different algorithms than IBM’s
Jikes, but both still implement correct Java virtual machines.

4.1.1 Generational Garbage Collection
Sun made its decisions about garbage collecting algorithms based
on program observation. Programs allocate many objects that
have very short lifetimes. These objects are instantiated, used and
discarded in rapid succession. For example, the extent of an
object that is local to a method is just the single invocation of that
method. If the method is called again, a new object is created for
the next invocation. Java programs also have many objects with
much longer lifetimes. In fact, if an object survives for more than
a short time, it has a high probability of having a very long
lifetime. Sun organized the JVM’s heap around these different
categories of objects, using different garbage collection
algorithms for each of them.

The JVM uses a hierarchical garbage collector. It separates the
heap into Young and Tenured generations. New objects are
allocated in the Young generation. Since there are many objects
with very short lifetimes, the Young generation fills up quickly.
Many of the objects also become garbage quickly. Minor garbage
collections clean up the Young generation using an algorithm that
is very fast when most of the space is garbage. If an object
survives several minor garbage collections, it is moved to the
Tenured generation.

The Tenured generation is garbage collected only when most of
its space is used. These full garbage collections use a mark and
compact algorithm that runs efficiently when there are still many
objects in use. A full garbage collection still takes significantly
longer to run than a minor garbage collection. It may be slowed
down even further by sometimes doing extra work, like allocating
more memory for the heap, if it is still too full after completing
the collection.

Garbage collections take place frequently. They are generally
transparent to the user, however. If an application is started with
the –verbose:gc option information about each garbage
collection is printed as it occurs. The garbage collector runs in a
separate thread from the application program. It does influence
the time reported by System.currentTimeMillis(),
however, because System.currentTimeMillis() records
elapsed time, not just time dedicated to the application.

4.1.2 Incremental Garbage Collection
The JVM contains an alternative garbage collection algorithm
named incremental garbage collection. Incremental garbage
collection is specified on the Java command using the –Xincgc
option. Incremental garbage collection replaces the full garbage
collection with a series of smaller steps run more frequently.
Since full garbage collection, which can be very time consuming,
never takes place, program runtimes are often much more
consistent when using incremental garbage collection. On the
other hand, incremental garbage collection can cause a
performance hit to the overall runtime of the program. Sun
included incremental garbage collction primarily for programs
with hard deadlines. These programs cannot afford to wait for a
full garbage collection to complete, but can wait for the more
frequent, but faster incremental garbage collections.

4.2 Heap Size
The amount of memory dedicated to the heap is not fixed. If the
heap is still relatively full after a garbage collection, more memory
will be allocated to it, up to a specified maximum. The heap’s
initial size may be set explicitly using the –Xms option. The
default maximum heap size is usually set so that the entire heap
will still reside in main memory. The heap’s maximum size may
be set using the –Xmx option. There are no hard and fast rules for
specifying the heap parameters. Specifying a large enough initial
heap size can prevent the need for garbage collections in programs
with small memory footprints and can delay the need for major
garbage collections in others. On the other hand, large heaps take
more time for garbage collection when it does occur.

4.3 The Modified MergeSort Explained
The modified MergeSort example shown in Figure 2 illustrates
anomalies associated with the heap.

4.3.1 The MergeSort Data
As you recall, Figure 2 charts the runtimes for a modified
MergeSort that is a O(n2) sort algorithm when implemented in
Java. There are three anomalies that need explanation:

1) Why isn’t the graph parabolic?

2) What is the blip at 65,000?

3) Finally, what is the discontinuity between 130,000 and
135,000?

In fact, the left portion of the data is close to parabolic. It is just
that the scale of the y-axis is so perturbed that the parabola is hard
to see. Figure 4 re-graphs the data from Figure 2, up to an array
of size 130,000. The graph appears roughly parabolic.

There are two outlying blips in Figure 4, one at 25,000 and one at
65,000. These blips are caused by full garbage collections running
very frequently. After the heap expands, full garbage collections
again run less frequently and the runtimes go back down.

The discontinuity between 130,000 and 135,000 is also a garbage
collection problem. Using the –verbose:gc option shows that
there is a full garbage collection following each minor garbage
collection at 135,000. The Tenured generation contains enough
objects that full garbage collections take place very frequently and
the entire program becomes garbage collection bound. The linux
ps command shows the system is spending 97% of its time doing
garbage collection and very little time actually sorting data.

Sort Runtimes

0

20

40

60

80

100

120

140

160

0 20000 40000 60000 80000 100000 120000

Array Size

Ti
m

e
(in

 S
ec

on
ds

)

Sort Data
Using Incremental GC

0
50

100
150
200

250

300
350
400

450

0 50000 100000 150000 200000

Array Size

Ti
m

e
(in

 S
ec

on
ds

)

Figure 5 shows runtimes from the MergeSort program running
with the incremental garbage collector. Recall that the
incremental garbage collector is used in place of full garbage
collections. Full garbage collections never take place, so the blips
disappear and the full garbage collection bottleneck is gone.

5. DYNAMIC OPTIMIZATION
Sun’s Hotspot JVM introduced several improvements that can
also impact runtime performance.

5.1 Dynamic Compilation
The Hotspot JVM executes both byte code and native code. It
takes responsibility for compiling byte code to native code when it
feels the performance to be gained is worth the time spent
compiling. Most methods are not compiled the first time they are
called. This is because many methods are only called once, and
compiling such methods would slow down the runtime
considerably. While there are several different rules that govern
when a method is compiled, the default behavior is to compile a
method when it has been called 1500 times.

5.2 Dynamic Optimizations
The Hotspot JVM also applies dynamic optimizations to code that
appears to be a bottleneck, or hotspot. Sun claims that this
approach shows major advantages over static code optimizers of
the type that come with languages like C++. The idea is that the
virtual machine will find hotspots in the program and apply
optimizations only to those areas. For example, a primary
optimization is method inlining, where a method invocation is
replaced by the body of the method. Polymorphism makes this
very difficult to do at compile time, as any of a number of
methods might be called at each invocation. At runtime, however,
the JVM has additional information that may let it know which
method will be invoked.

Dynamic compilation and dynamic optimizations can play
important roles in improving the performance of programs with
long runtimes. We have encountered them infrequently in student
programs. Most of the time, programmer supplied code is
compiled early enough that the runtimes collected reflect
executing native code. Occasionally there will be an unexplained
blip in runtimes that can be attributed to dynamic optimizations,
but the JVM does not give us an easy way to capture when this is
occurring.

5.3 Rehashing Explained
The rehashing experiment created and populated a Hashtable
with Integers and timed how long it took to rehash. The
runtimes for various numbers of Integers were shown in Figure
3. There is one major anomaly in the data. When the number of
elements in the Hashtable grows large enough, the program
actually speeds up. Both segments of the graph illustrate close to
linear behavior, but the program runs faster and the slope of the
line is much less steep for the larger data sets. This is completely
due to dynamic optimizations. The JVM inlined method calls and
applied other optimizations when approximately 90% of its time
was taken up by rehashing. The improvement in performance is
dramatic. Figure 5. The sort program runtimes when using

incremental garbage collection.

Figure 4. The initial portion of the sort data is close to a
parabola.

Rehashing is a memory intensive process. While the rehashing is
taking place there are two hash tables in existence, the old one
from which data is being removed and the new one to which data
is being inserted. In this example, full garbage collections were
frequently taking place when the heap was small, because more
space was needed. As the program runs, the heap grows larger,
making garbage collection less frequent and increasing the time
spent on rehashing. We can obtain improved performance more
quickly by starting with a larger heap. Figure 6 shows runtimes
for the same program as Figure 3, but with the initial heap size set
to 500 Megabytes. Incremental garbage collection was not used.
The graph displays the linear behavior consistent with the right
hand segment in Figure 3.

Rehashing with Large Initial Heap

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 500000 1000000 1500000 2000000

Number of Elements in Hashtable

Ti
m

e
(in

 s
ec

on
ds

)

6. CONCLUSIONS
In this paper we have explained three major causes of runtime
anomalies in Java programs: program startup consideration, heap
management and dynamic optimizations. Our approach is still ad
hoc, however. Each time we encounter runtimes in a student
program that don’t reflect the underlying algorithm, we start from
scratch looking for possible causes. Our long term goal is to
develop a clear, simple set of instructions for our students so that
they can perform runtime experiments on their own and obtain
meaningful results.

Source code for all examples presented in this paper is available
from the author.

7. REFERENCES
[1] Armstrong, E., HotSpot: A New Breed of Virtual Machine,

Java World, March 1998. Available on-line at
http://www.javaworld.com/javaworld/jw-03-1998/jw-03-
hotspot_p.html.

[2] Braught, G., Miller, C., and Reed, D., Core Empirical
Concepts and Skills for Computer Science, Proceedings of
the Thirty-Fifth SIGCSE Technical Symposim on Computer
Science Education, Norfolk, VA, March 3-7, 2004.

[3] Goetz, B., Java Theory and Practice: A Brief History of
Garbage Collection, DeveloperWorks, IBM, October 2003.
Available on-line at http://www-
106.ibm.com/developerworks/java/library/j-jtp10283.

[4] Goetz, B., Java Theory and Practice: Garbage Collection in
the 1.4.1 JVM, DeveloperWorks, IBM, November 2003,
Available on-line at http://www-
106.ibm.com/devloperworks/java/library/j-jtp11253.

[5] Jones, R., Lins, R., Garbage Collection: Algorithms for
Automatic dynamic Memory Management, John Wiley and
Sons, New York, NY, 1996.

[6] Lindholm, T. and Yellin, F., The Java Virtual Machine
Specification, Second Edition, Addison-Wesley, Boston,
MA, 2003.

[7] Reed, D., moderator, Integrating Empirical Methods into
Computer Science, Proceedings of the Thirty-Third SIGCSE
Technical Symposium on Computer Science Education,
Covington, KY, February 27-March 3, 2002.

[8] Shirazi, J., Java Performance Tuning, O’Reilly and
Associates, Sebastopol, CA, 2000.

[9] Venners, B., The Hotspot Virtual Machine: How Hotspot
Can Improve Java Program Performance and Designs,
Developer.com, May 1998. Available on-line at
http://www.artima.com/desingtechniques/hotspotP.html.

[10] Wilson, S. and Kesselman, J., Java Platform Performance:
Strategies and Tactics, Addison-Wesley, Boston, MA, 2000.

Figure 6. Runtimes obtained by rehashing program
when using a large initial heap.

