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ABSTRACT 
Many instructors use program runtimes to illustrate and reinforce 
algorithm complexity concepts.  Hardware, operating system and 
compilers have historically influenced runtime results, but 
generally not to the extent of making the data difficult to interpret.  
The Java virtual machine adds an additional layer of software, 
making it much harder to obtain easy to interpret results.  This 
paper presents some of the basic issues the author and his students 
have encountered when analyzing Java program runtimes and 
briefly discusses strategies to address them. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Measurement Techniques, 
Performance  

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Java virtual machine, Program runtime, Garbage Collection,  

1. INTRODUCTION 
The author recently taught Data Structures and Algorithms for the 
first time since his department’s curriculum was converted from 
C++ to Java.  Like many instructors, he wished to demonstrate 
how the complexity of an algorithm directly impacts its 
implementation’s runtime.  The importance of this type of activity 
is well recognized by computer science educators [2, 7].  During 
the semester, the author and his students collected runtime data 
from a variety of programs, but found themselves repeatedly 
confused by the data because of influences from the virtual 
machine.  Figures 1 through 3 show runtimes for sample 
programs.  The data presented in these figures were obtained 
using Sun’s SDK 1.4.1 running under Debian Linux, Version 3.0 
on a 2.4 Gigahertz machine with 512 Megabytes of memory. 
Times were measured using the method 
System.currentTimeMillis().  Similar results may be 
obtained using other hardware and software configurations. 

Figure 1 shows the runtimes for repeated calls to 
Arrays.sort() with random int arrays of size 20,000.  
Arrays.sort uses a version of Quicksort, which is an unstable 
algorithm.  In the long run we expect to see some fluctuation in 
runtimes.  This is not the cause of the problem here, however, as 
repeated runs of our program with different random arrays 
produce very similar results.  The virtual machine is causing the 
method to run more slowly on the first call than on subsequent 
calls. 
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Figure 2 shows the runtimes for a Java program implementing a 
O(n2) sort algorithm.  The sort is not one of the standard O(n2) 
sorts, however.  The author had recently introduced his students 
to the fact that instantiating a Java array is a O(n) operation, since 
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Figure 1. Runtimes of Arrays.sort called five times in 
succession on random int arrays of size 20,000.  The 
first run took significantly longer than any of the others. 

 

Figure 2. Runtimes obtained for a O(n2) sort program. 



all cells in the array are initialized.  To reinforce this idea, he 
modified the merge() method from a MergeSort program to use a 
temporary array the size of the entire array being sorted.  This one 
line change makes the MergeSort program O(n2).  The author was 
expecting the graph to be roughly parabolic.  Instead, it appears to 
have near linear behavior, with a major discontinuity occurring 
between 130,000 and 135,000. 

Figure 3 shows runtimes for rehashing a Java Hashtable.  This 
experiment was suggested by Michael Clancy during a panel 
discussion at SIGCSE 2002 [7]. A Hashtable of size 1,000,000 
was created and a varying number of Integers was added to it.  
Since the size of the Hashtable is fixed, rehashing is linear in the 
number of elements added.  The author was expecting the graph in 
Figure 3 to be roughly a single straight line.  Instead, the graph 
consists of two line segments, with the runtimes for larger data 
sets being significantly faster than runtimes for smaller data sets.  
Somehow between 120,000 and 130,000 the program speeds up 
by over a factor of five. 
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These examples illustrate that interpreting Java program runtimes 
is difficult.  The goal of this paper is to explain the features of the 
Java virtual machine that are major influences on program 
runtimes and show how they may be explained and at least 
partially controlled to obtain runtimes that reflect the complexity 
of the underlying algorithm.  What we want is to be able to time a 
O(n2) algorithm and plot the results, obtaining something akin to a 
parabola.   

This goal is very different than performance tuning.  Performance 
tuning looks at the virtual machine’s features with the goal of 
making a program run faster.  There are many texts and papers 
that address Java performance tuning [1, 6, 8, 9, 10].  Sun’s 
Hotspot virtual machine even tries to tune performance of the 
program dynamically.  This paper does not discuss how to make 
Java programs run faster.  In fact, we will sometimes accept a hit 
in overall performance if we can thereby obtain runtimes more 
consistent with the underlying algorithm.  

2. JAVA VIRTUAL MACHINES 
Most CS instructors are aware of how a computer’s hardware and 
system software influence the runtime of a program.  The CPU 
speed, the amount of main memory, the amount of cache, the 

operating system and the compiler all play significant roles.  We 
take these into account when designing experiments to illustrate 
algorithm complexity.  For example, if we are working with data 
structures, we limit their size so that they will fit into physical 
memory, because we know that as soon as the program starts 
swapping pages to virtual memory it will slow down significantly.  
In general, however, it is not difficult to obtain runtimes that are 
consistent with the underlying algorithm.  

Java virtual machines impose another level of software between 
the program and the operating system.  There are many different 
Java virtual machines available.  This paper only discusses Sun’s 
Hotspot virtual machine (JVM).  As Java and the JVM have 
matured, a number of issues have arisen that make designing 
experiments and interpreting empirical data more difficult.  
Among the issues are:  

1) Starting a Java application incurs a sizable cost.  Processes 
and threads must be created and the JVM must be initialized.  
Library files must be opened and a fairly large set of classes 
must be loaded.  Only then is programmer code invoked.    

2) The JVM automates heap management.  The heap is the area 
of memory where all objects are allocated.  Heap management 
consists of controlling the size of the heap and removing 
objects from the heap that are no longer in use.  All Java 
instructors know that programmers no longer need to 
explicitly free memory resources, as the garbage collector 
takes care of it for us.  We also realize that garbage collection 
takes time.  It is important that we understand how garbage 
collection works and the effect it can have on a program’s 
runtime.  

3) The JVM interprets byte code but also compiles byte code into 
native code for better performance.  There are tradeoffs as 
compiling takes time, but the resulting native code may run 
significantly faster. 

4) The JVM dynamically optimizes running programs.  The 
Hotspot virtual machine takes its name from its ability to 
analyze a running program, find the bottlenecks, or hotspots, 
in the program and apply optimizations on the fly.   

3. PROGRAM STARTUP 
The JVM is resource intensive at program startup.  As an 
example, consider the data presented in Figure 1.  It shows the 
runtimes obtained when invoking Arrays.sort() five times 
in succession on random int arrays of size 20,000.   The first 
invocation takes 18 milliseconds, which is more than the next four 
invocations combined. 

Figure 1 only presents part of the picture, however.  There are 
startup costs that are not captured by 
System.currentTimeMillis().   The operating system 
creates one or more processes for the virtual machine.  The JVM 
is loaded and initialized.  Standard libraries must be located and 
opened.  Since these actions occur before the first call to 
System.currentTimeMillis(), they affect the measured 
elapsed time for running a Java program, but do not influence our 
recorded runtime and are not discussed further here.   

Once the JVM is started, running an application requires loading 
and initializing a collection of classes.  The simplest possible Java 
application, one with a completely empty main method, loads 280 

Figure 3. Runtimes obtained when rehashing a 
hashtable of size 1,000,000. 

 



classes during execution.  Loading classes into the JVM is 
generally a disk-bound activity which is slow compared to CPU 
activities.  

The high cost of the first call to Arrays.sort() in Figure 1 is 
due to loading the Arrays class.  On the system where the data 
was collected, the Java libraries are installed on a file server, 
which slowed the class loader even further.  

Frequently, when we are measuring program runtimes, we are 
interested in taking a series of measurements.  It is best to warm 
up the virtual machine before we start taking collecting data.  As a 
rule of thumb, call each method to be timed at least twice before 
beginning to record times. 

4. HEAP MANAGEMENT 
All objects in a Java program live in the JVM’s heap.  When an 
object is instantiated, memory is allocated for it in the heap.  
Sometime after the program finishes using an object, the memory 
is returned to the free portion of the heap for reallocation.  
Because Java is object-oriented, many objects are created during 
the run of even a simple Java program, making heap management 
important.  The two most important issues related to heap 
management are garbage collection and heap size. 

4.1 The JVM’s Garbage Collector 
When an object is no longer referenced by a program it becomes 
garbage.  Unlike older programming languages, e.g. Pascal, C and 
C++, it is no longer the programmer’s responsibility to return 
garbage to the heap for reuse.  Instead, the JVM’s garbage 
collector takes care of it automatically.  The garbage collector 
finalizes each object and then returns its memory to the heap [3, 4, 
5].  There are many different garbage collection algorithms, each 
with various strengths and weaknesses [5].  The Java Virtual 
Machine Specification does not indicate which algorithm(s) 
should be used.  It is left to the virtual machine implementer to 
choose [6].  Sun’s JVM can use different algorithms than IBM’s 
Jikes, but both still implement correct Java virtual machines. 

4.1.1 Generational Garbage Collection 
Sun made its decisions about garbage collecting algorithms based 
on program observation.  Programs allocate many objects that 
have very short lifetimes.  These objects are instantiated, used and 
discarded in rapid succession.  For example, the extent of an 
object that is local to a method is just the single invocation of that 
method.  If the method is called again, a new object is created for 
the next invocation.  Java programs also have many objects with 
much longer lifetimes.  In fact, if an object survives for more than 
a short time, it has a high probability of having a very long 
lifetime.  Sun organized the JVM’s heap around these different 
categories of objects, using different garbage collection 
algorithms for each of them. 

The JVM uses a hierarchical garbage collector.  It separates the 
heap into Young and Tenured generations.  New objects are 
allocated in the Young generation.  Since there are many objects 
with very short lifetimes, the Young generation fills up quickly. 
Many of the objects also become garbage quickly.  Minor garbage 
collections clean up the Young generation using an algorithm that 
is very fast when most of the space is garbage.  If an object 
survives several minor garbage collections, it is moved to the 
Tenured generation.   

The Tenured generation is garbage collected only when most of 
its space is used.   These full garbage collections use a mark and 
compact algorithm that runs efficiently when there are still many 
objects in use.  A full garbage collection still takes significantly 
longer to run than a minor garbage collection.  It may be slowed 
down even further by sometimes doing extra work, like allocating 
more memory for the heap, if it is still too full after completing 
the collection.   

Garbage collections take place frequently.  They are generally 
transparent to the user, however.  If an application is started with 
the –verbose:gc option information about each garbage 
collection is printed as it occurs.  The garbage collector runs in a 
separate thread from the application program.  It does influence 
the time reported by System.currentTimeMillis(), 
however, because System.currentTimeMillis() records 
elapsed time, not just time dedicated to the application.   

4.1.2 Incremental Garbage Collection 
The JVM contains an alternative garbage collection algorithm 
named incremental garbage collection.  Incremental garbage 
collection is specified on the Java command using the –Xincgc 
option.  Incremental garbage collection replaces the full garbage 
collection with a series of smaller steps run more frequently.  
Since full garbage collection, which can be very time consuming, 
never takes place, program runtimes are often much more 
consistent when using incremental garbage collection.  On the 
other hand, incremental garbage collection can cause a 
performance hit to the overall runtime of the program.  Sun 
included incremental garbage collction primarily for programs 
with hard deadlines.  These programs cannot afford to wait for a 
full garbage collection to complete, but can wait for the more 
frequent, but faster incremental garbage collections. 

4.2 Heap Size 
The amount of memory dedicated to the heap is not fixed.  If the 
heap is still relatively full after a garbage collection, more memory 
will be allocated to it, up to a specified maximum.  The heap’s 
initial size may be set explicitly using the –Xms option.  The 
default maximum heap size is usually set so that the entire heap 
will still reside in main memory.  The heap’s maximum size may 
be set using the –Xmx option.  There are no hard and fast rules for 
specifying the heap parameters.  Specifying a large enough initial 
heap size can prevent the need for garbage collections in programs 
with small memory footprints and can delay the need for major 
garbage collections in others.  On the other hand, large heaps take 
more time for garbage collection when it does occur. 

4.3 The Modified MergeSort Explained 
The modified MergeSort example shown in Figure 2 illustrates 
anomalies associated with the heap.   

4.3.1 The MergeSort Data 
As you recall, Figure 2 charts the runtimes for a modified 
MergeSort that is a O(n2) sort algorithm when implemented in 
Java.  There are three anomalies that need explanation:   

1) Why isn’t the graph parabolic?   

2) What is the blip at 65,000?   



3) Finally, what is the discontinuity between 130,000 and 
135,000? 

In fact, the left portion of the data is close to parabolic.  It is just 
that the scale of the y-axis is so perturbed that the parabola is hard 
to see.  Figure 4 re-graphs the data from Figure 2, up to an array 
of size 130,000.  The graph appears roughly parabolic. 

There are two outlying blips in Figure 4, one at 25,000 and one at 
65,000. These blips are caused by full garbage collections running 
very frequently.  After the heap expands, full garbage collections 
again run less frequently and the runtimes go back down. 

The discontinuity between 130,000 and 135,000 is also a garbage 
collection problem.  Using the –verbose:gc option shows that 
there is a full garbage collection following each minor garbage 
collection at 135,000.  The Tenured generation contains enough 
objects that full garbage collections take place very frequently and 
the entire program becomes garbage collection bound.  The linux 
ps command shows the system is spending 97% of its time doing 
garbage collection and very little time actually sorting data. 
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Figure 5 shows runtimes from the MergeSort program running 
with the incremental garbage collector.  Recall that the 
incremental garbage collector is used in place of full garbage 
collections. Full garbage collections never take place, so the blips 
disappear and the full garbage collection bottleneck is gone. 

5. DYNAMIC OPTIMIZATION 
Sun’s Hotspot JVM introduced several improvements that can 
also impact runtime performance.   

5.1 Dynamic Compilation 
The Hotspot JVM executes both byte code and native code.  It 
takes responsibility for compiling byte code to native code when it 
feels the performance to be gained is worth the time spent 
compiling.  Most methods are not compiled the first time they are 
called.  This is because many methods are only called once, and 
compiling such methods would slow down the runtime 
considerably.  While there are several different rules that govern 
when a method is compiled, the default behavior is to compile a 
method when it has been called 1500 times. 

5.2 Dynamic Optimizations 
The Hotspot JVM also applies dynamic optimizations to code that 
appears to be a bottleneck, or hotspot.  Sun claims that this 
approach shows major advantages over static code optimizers of 
the type that come with languages like C++.  The idea is that the 
virtual machine will find hotspots in the program and apply 
optimizations only to those areas.  For example, a primary 
optimization is method inlining, where a method invocation is 
replaced by the body of the method.  Polymorphism makes this 
very difficult to do at compile time, as any of a number of 
methods might be called at each invocation.  At runtime, however, 
the JVM has additional information that may let it know which 
method will be invoked. 

Dynamic compilation and dynamic optimizations can play 
important roles in improving the performance of programs with 
long runtimes.  We have encountered them infrequently in student 
programs.  Most of the time, programmer supplied code is 
compiled early enough that the runtimes collected reflect 
executing native code.  Occasionally there will be an unexplained 
blip in runtimes that can be attributed to dynamic optimizations, 
but the JVM does not give us an easy way to capture when this is 
occurring. 

5.3 Rehashing Explained 
The rehashing experiment created and populated a Hashtable 
with Integers and timed how long it took to rehash.  The 
runtimes for various numbers of Integers were shown in Figure 
3.  There is one major anomaly in the data.  When the number of 
elements in the Hashtable grows large enough, the program 
actually speeds up.  Both segments of the graph illustrate close to 
linear behavior, but the program runs faster and the slope of the 
line is much less steep for the larger data sets.  This is completely 
due to dynamic optimizations.  The JVM inlined method calls and 
applied other optimizations when approximately 90% of its time 
was taken up by rehashing.  The improvement in performance is 
dramatic. Figure 5. The sort program runtimes when using 

incremental garbage collection. 

Figure 4. The initial portion of the sort data is close to a 
parabola. 

 



Rehashing is a memory intensive process.  While the rehashing is 
taking place there are two hash tables in existence, the old one 
from which data is being removed and the new one to which data 
is being inserted.  In this example, full garbage collections were 
frequently taking place when the heap was small, because more 
space was needed.  As the program runs, the heap grows larger, 
making garbage collection less frequent and increasing the time 
spent on rehashing.  We can obtain improved performance more 
quickly by starting with a larger heap.  Figure 6 shows runtimes 
for the same program as Figure 3, but with the initial heap size set 
to 500 Megabytes.  Incremental garbage collection was not used.  
The graph displays the linear behavior consistent with the right 
hand segment in Figure 3. 
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6. CONCLUSIONS 
In this paper we have explained three major causes of runtime 
anomalies in Java programs: program startup consideration, heap 
management and dynamic optimizations.  Our approach is still ad 
hoc, however.  Each time we encounter runtimes in a student 
program that don’t reflect the underlying algorithm, we start from 
scratch looking for possible causes.  Our long term goal is to 
develop a clear, simple set of instructions for our students so that 
they can perform runtime experiments on their own and obtain 
meaningful results. 

Source code for all examples presented in this paper is available 
from the author.  
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Figure 6. Runtimes obtained by rehashing program 
when using a large initial heap. 

 


